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Energy relaxation and the quasiequation of state of a dense two-temperature
nonequilibrium plasma
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A first principles approach to the equation of state~EOS! and the transport properties of an interacting
mixture of electrons, ions, and neutrals in thermodynamic equilibrium was presented recently in Phys. Rev. E
52, 5352 ~1995!. However, many dynamically produced plasmas have an electron temperatureTe different
from the ion temperatureTi . The study of these nonequilibrium~non-eq.! systems involves~i! calculation of
a quasiequation of state~quasi-EOS! and the needed non-eq. correlation functions, e.g., the dynamic structure
factorsSss8(k,v), wheres is the species index; and~ii ! a calculation of relaxation processes. The energy and
momentum relaxations are usually described in terms of coupling constants determining the rates of equilib-
riation. Simple Spitzer-type calculations of such coupling constants often use formulas obtained by averaging
the damping of asingle energetic particle by the medium. However, a different result is obtained for the
energy-loss ratêdHe /dt& of the electron subsystem when calculated from the commutator mean value
^@He ,H#2&, whereHe andH are the Hamiltonians of the electron subsystem and the total system. This result
corresponds to energy relaxation via the interaction of thenormal modesof the hot system with thenormal
modesof the cold system. Such a description is particularly appropriate for dense plasmas. The evaluation of
the commutator mean values within the Fermi golden rule~FGR!, or more sophisticated Keldysh or Zubarev
methods, yields formulations involving the dynamic structure factors of the two subsystems. The single-
particle and normal-mode methods are conceptually very different. Here we present calculations of the energy
relaxation of dense uniform two-temperature aluminum plasmas, and compare the usual Spitzer-type estimates
with our more detailed FGR-type results. Our results show that the relaxation rate is more thanan order of
magnitude smallerthan that given by the commonly used theories.@S1063-651X~98!02309-5#

PACS number~s!: 52.25.Kn, 52.25.Gj, 05.30.Fk, 71.10.2w
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I. INTRODUCTION

The advent of short-pulse lasers has extended the lab
tory study of nonequilibrium systems to regimes which we
not accessible by standard shock-wave techniques.
shock technique enables one to heat the ions to high t
peratures, while the electrons remain relatively cool since
transfer of energy from the ions to the electron subsystem
very slow. On the other hand, the laser couples strongly
the electrons and heats the electron subsystem, while the
subsystem remains cool within the time scales appropriat
the electronic equilibriation. Thus the two experimental te
niques complement each other in providing systems w
cold electrons and hot ions, or hot electrons and cold ion

The detailed thermodynamic description of an equilibriu
system fromfirst principlesis itself a very formidable prob-
lem, since detailed atomic physics for a mixture of ionizati
states of ions in plasmas have to be carried out s
consistently, determining the bound states, ionization b
ance, equilibrium correlation functions, etc. We have
cently presented such a study of the equilibrium equation
state~EOS! of Al from relatively low-temperature condition
to those of high temperatures and high compressions@1#.
However, the methods to be used for determining

*Electronic mail: chandre@cm1.phy.nrc.ca
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quasiequation of state~quasi-EOS! for a system in quasiequi
librium is not immediately evident. First of all, the meanin
of the quasithermodynamic variables has to be addres
Then their determination from a rigorous nonequilibriu
technique needs to be linked with energy and momen
relaxation calculations. These are of coursenot new prob-
lems, and various classical and quantum methods, as we
simplified approaches, have been developed over the y
@2,3#. Some of the modern, rigorous methods began with
work of Refs. @4,5#, where it was shown how the usua
S-matrix techniques can be extended to nonequilibrium pr
lems. This method was neatly expressed by Keldysh, w
presented a simple contour scheme for the implementatio
the approaches of Refs.@4,5#. Developing on the ideas o
Bogoliubov, Zubarev presented an extension of two-time
tarded Green functions for application to nonequilibrium s
tems. In practice, the latter approach is harder to apply
merically, but gives an insightful understanding of th
meaning of various quasithermodynamic variables in qu
equilibrium systems. The essential point is that in an eq
librium system, just as the chemical potentialm is the
Lagrange multiplier for the conservation of particle numb
the temperature variable (b51/kBT) is simply the Lagrange
multiplier that expresses the conservation of the total ene
~i.e., ^H&). It is not an expression of some ‘‘average kine
energy,’’ etc., even though it does play that role in som
model systems. When we go to a system in some quasie
3705 © 1998 The American Physical Society
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3706 PRE 58M. W. C. DHARMA-WARDANA AND FRANÇOIS PERROT
librium state, it may turn out that the energy of the electr
subsystem,̂ He&, is conserved for certain time scaleste ,
while the energy of the ion subsystem,^Hi&, is conserved for
other time scalest i . Under such conditions, we can intro
duce two Lagrange multipliersbe and b i to insist on the
conservation of subsystem energies within their respec
time scales. The interaction between the two systems, g
by H int , cannot be assigned to eitherbs , s5e and i . Ini-
tially, when the external perturbations~e.g., the energy depo
sition from a laser! are switched on, the system evolves ve
rapidly, and it is often impossible to identify these conserv
quantities. However, once a quasiequilibrium state is
tained, it is possible to identify quasiconserved quantit
like bs , Ps , or Vs representing the pressure and the quas
ermodynamic potential of the subsystems.

In this paper we assume that the nonequilibrium evolut
of the system from some initial state to some quasiequi
rium state, with given subsystem densitiesrs and inverse
temperaturesbs , has been achieved, and that their values
known. For simplicity, in this work we assume that there a
just two subsystems, i.e., electrons and one kind of ion.
ing the quasiequilibrium system parameters as inputs,
calculate the energy relaxation of the interacting subsyst
via the traditional single-particle stopping power approa
as well as from the full many-body approach. In the lat
approach it turns out that the energy relaxation occurs fr
the normal modes of the hot subsystem to the normal mo
of the cold subsystem. Thus the calculation of the dyna
structure factorsSe(k,v,Te) andSi(k,v,Ti) of the two sub-
systems becomes an essential step. Another important a
of the relaxation calculation is the ion-electron interacti
potentialU ie , which depends in a complicated way on t
internal bound-state structure of the ions. Thus an atom
physics problem where the electron-ion coupling as well
the ion-ion coupling is strong has to be solved to all orde
and then the necessary electron-ion pseudopotentials ha
be constructed. That is, we assume that the ionization e
librium between the bound electrons and the free electr
occur rapidly enough~compared to electron-ion equilibria
tion!, so that the core electrons at each temperature ca
projected out via the construction of the pseudopoten
Most of these steps are identical to the ones used in
equilibrium EOS calculation.@1# However, some pertinen
nonequilibrium issues are addressed in Appendix A. He
the main focus of this work is the calculation of relaxati
rates. In Sec. II, we describe our two-temperature theory
neutral, spatially uniform plasma, and assume that the

density r̄ and the effective ionic chargeZ̄, as well as the
temperaturesTi andTe of the ions and electrons are give
and that the initial source of excitation~e.g., the intense lase
field! is switched off. We also assume that charge neutra
exists at least in a global sense, and hence the electron

sity n̄ is such thatn̄5Z̄r̄. With these as input, we set up th
calculation of the energy relaxation rate (Ėrlx) using the
Fermi golden rule~FGR!. This calculation involves the com
putation of frequency dependent~i.e., dynamic! structure
factors of the electron fluid and the ion fluid, using the int
action potentials obtained from the detailed microscopic
scription of the plasma. In the FGR approach, the two s
systems are assumed to be ‘‘independent’’ in the sense
n
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their response functions, etc., can be calculated without
erence to the dynamics of the other system, although s
mean-field effects of the other system could be incorpora
The construction of the ion-ion pair potential, which involv
the screening of the ions by the free electrons, is an exam
of such a static effect that is already included. A more
phisticated calculation includes the dynamical interaction
tween the two subsystems~i.e., a coupled-mode description!
and this cannot be treated using the FGR, but we show
the final result, obtained using Keldysh methods, looks lik
FGR result with renormalized quantities. These detailed c
culations ofĖrlx are now used to compare~i! the Ėrlx pre-
dicted from a simple prescription based on the approache
Spitzer@2#, Brysk @3#, and Lee and More@6#.

II. THEORY

In this section we review the theory of energy relaxati
within four schemes, where the first two use asingle test
particle as the starting point of theĖrlx analysis.

~i! Classical collisional approach:The simplified classi-
cal approach considers the energy exchange in a binary
lision, and takes an average over the distribution function
obtain the energy-relaxation rate. Such a discussion
found by Spitzer@2#. The effects of partial electron degen
eracy were treated by Brysk@3# within the same approach
Fokker-Plank-Langevin-type theory provided a more gene
and sophisticated treatment of this problem in terms of
friction and diffusion coefficients of a test particle in
plasma@7#. Such a general discussion has the advantage
approximations can be tested against various sum rules
conservation properties.

~ii ! Self-energy approach:The imaginary part of the self
energy is the stopping power sometimes used for calcula
energy relaxation. Hence we develop the formal express
for the damping estimated via the self-energy, and also n
the analogy with the classical Fokker-Plank method. Al
we introduce the diagrams which arise also in presenting
FGR as well as coupled-mode calculations. Here we give
formal generalization to two-temperature systems, but
merical calculations are not presented as the formal exp
sions derived here are enough to show the limitations of
method.

~iii ! Fermi golden rule approach:The quantum mechani
cal calculation of the energy-relaxation rate of electro
~say!, involves the evaluation of̂Ḣe&, which is given by the
commutator averagê@He ,H#2&, whereHe and H are the
Hamiltonians for the electron subsystem and for the to
system. It can be shown that this leads in the simplest
proximation to the FGR calculation of the energy-relaxati
rate. Here we assume that we have two ‘‘weakly couple
subsystems whose response functions can be calculate
dependently of the dynamics of each other, and that the F
gives the interaction rates. This is conceptuallydifferent
from the rate calculation via single-particle kinematics, ev
if the two calculations lead to similar results in suitable lim
its. The FGR calculation of the relaxation rate uses themode
spectrumof the plasma, and holds in general, irrespective
whether the modes are strongly correlated and collective
single-particle-like. Numerical results will be present
within this scheme.
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~iv! Coupled-mode energy-relaxation rate:In this ap-
proach, we do not assume that the electron subsystem
the ion subsystem are ‘‘independent’’ to the extent that th
excitations can be treated independently. That is, we incl
the interactions between the density fluctuations of the e
tron subsystem and the ion subsystem at the dynamical le
The FGR is nota priori applicable to systems with couple
modes. However, use of other methods~e.g., the Keldysh
technique! shows that the final results have the form of
renormalized FGR. The coupled modes play the role o
hot-ion bottleneck to relaxation, and slow the relaxation i
nonlinear way, and become important for certain time sca
Numerical results for this case are also presented. Fur
the last three~quantum! calculations hold in the classica
regime as well and make contact with the Fokker-Plank-t
approaches which are limited to the classical regime.

Although we use atomic units (e5\5me51) in this pa-
per, sometimesme and other quantities will be displaye
when this is helpful. TemperaturesTi andTe will be in Har-

tree energy units or in eV. The effective ionic chargeZī may

sometimes be denoted byZ̄.

A. Fokker-Plank method and simplified classical approaches

Let us first review the usual method of calculation of t
energy relaxation rate of a fast particle, called atestparticle,
interacting with a set offield particles. The typical time scal
t1 for the single-particle distribution functions to relax is
the order of;l/ v̄, wherel is the mean free path andv̄ is
the mean velocity. The typical relaxation times for correla
processes involvingn-body effects may be denoted bytn . If
we consider the pair-distribution function and related plas
oscillation modes, thent2 is of the order oflD / v̄, wherelD
is a screening length which becomes the Debye length
weakly correlated plasmas. As long ast1@t2 etc., the
single-particle collision picture can be used. But in stron
coupled plasmas,lD becomes comparable to mean interp
ticle distances, andt2 may no longer be small in compariso
to t1. Thus, while the single-test-particle approach may
valid in some regimes, it should become inapplicable in s
ficiently dense plasmas. In fact, thef -sum rule is essentially
exhausted by the weight of the plasma peak even in di
plasmas, and this emphasizes the inadequacy of the sin
particle picture.

In the single-particle~nonquantum! approach we conside
the kinetic energyw of a test particle, viz.,w5 1

2 mv2. Its rate
of change, for a ‘‘Brownian-like’’ time scalet, is the mean
changê Dw&/t arising from the velocity changeDv during
the time intervalt. The velocity changes arise from coll
sions and can be expressed via the friction coefficientF(v)
and the diffusion coefficientD(v). Thus@7#

dw/dt5
m

2
^uv1Dv~t!u22uvu2&/t ~1!

5mv–F~v!1
m

2
Tr D~v!, ~2!

F~v!5^Dv&/t, ~3!
nd
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D~v!5^DvDv&/t. ~4!

The friction coefficients can be written as

F~v!5F11F2 ,

F15~ Z̄t
2/m!E dk3

~2p!3
@V~k!k#Im@e~k,k–v!21#,

F25 1
2 ]–D~v!/]v,

and depends on the imaginary part of the dielectric functi

as in the usual stopping power treatment. In the above,Z̄t is
the charge of the test particle. The diffusion-coefficient te
can also be expressed in terms of a dielectric tensor as

D~v!5
2pZ̄t

2

m2 E dk3

~2p!3
@ Z̄f

2V~k!2kk #
f f~v8!d@k–~v2v8!#

ue~k,k–v!u2
.

~5!

This equation explicitly involves the chargeZ̄f and the
distribution function f f(v) of the field particles. For the
present we note that these expressions~when averaged ove
the particle distributions! yield an energy-relaxation rate fo
a system of electrons~test particles! and ions~field particles!.
In the high-temperature limit, the following result due
Spitzer is recovered@2#:

^dTe /dt&52~me /Mi !~3/2!~Te2Ti !/tei
rlx , ~6!

where

tei
rlx5T 3/2/~8/3!A~2p!r̄Zi

2lnL, ~7!

T5@Te1Ti~me /Mi !#, ~8!

ln~L!5 ln~lD /lmin!. ~9!

In these and other equations,Ti andTe are in energy units.Zi
andMi are the ion charge and mass, respectively. The C
lomb logarithm ln(L) involves the ratio of the average clos
est distance of approach, i.e.,lmin and the Debye screenin
lengthlD . Note that for a classical plasma of particles wi
no internal structure, the internal energyEs of the speciess
is 3

2 Ts , and hence the temperature relaxation rate is es
tially the same as the energy relaxation rate. But in a m
general approach the internal energies of the ion subsys
and the electron subsystem in a nonequilibrium setting~i.e.,
quasiequations of state for each species! are needed to con
vert the energy-relaxation rate to the temperature relaxa
rate.

The above equations, viz., Eq.~7!, etc., hold in the regime
where the distribution functions are completely Maxwellia
When degeneracy effects are to be taken into account@3#, it
is usual to write, within some approximation, the energ
relaxation rate in terms of a suitable electron-ion collisi
frequency ^nei

col&. Many approximate forms for̂ nei
col& are

found in the literature, often with the ion temperature set
zero @8#. Here we use a generalization which reduces in
Ti50 limit to the collision frequency given by Lee and Mor
@6#. Thus
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t̄ei
col5

3T 3/2@11e2m/Te#

2meA2Z̄n̄ ln~L!
F1/2~m/Te!, ~10!

where

F j~h!5E
0

`

t jdt/@11exp~ t2h!#,

ln~L!5 1
2 ln@11lD

2 /lmin
2 #,

lD
2254pn̄$@Te

21~3EF/2!2#1/21Z̄/Ti%,

lmin5max@ Z̄/3Te ,h/~2A3Teme!#.

Here the Debye length is interpolated between the De
value and the Thomas-Fermi value, while the minimum i
pact parameter is either the classical distance of closes
proach or the de Broglie length. Further, in Eq.~8! we have
slightly modified theT3/2 term of Lee and More to include
the ion temperatureTi which is needed in the electron-io
relaxation problem. This Lee-More model and other mod
vary in some details but lead to similar numerical estima
~to within a factor of 2! of the relaxation rate. Hence we sha
use the above equations as a representative of the con
tional Spitzer-type calculation ofĖrlx inclusive of some de-
generacy effects.

B. Quantum mechanical self-energy approach

The discussion of the self-energy for equilibrium syste
with point ions is well known. Here we consider the ca
involving pseudopotentials and the two-temperature ge
alization of the self-energy. The single-particle electr
propagator G(k,t;k8,t8), i.e., ^^ak ,ak8

† &&, describes the
propagation of an electron introduced into the system~cre-
ated! in the momentum statek, at time t, and removed~an-
nihilated! from the momentum statek8, at time t8 @9#. The
propagating particle suffers scattering events, and acqu
an energy shift and a damping which are given by the r
and imaginary parts of the self-energyS(k,k8). This is re-
lated to the noninteracting Green functionG0 and the full
Green functionG by the Dyson equation. A number of com
plications arise in dealing with nonequilibrium system
When using the Keldysh form of the Martin-Schwinger a
proach, all Green functions, self-energies etc., beco
(232)-matrix operators, whereG11 deals with propagation
from time t52` to t1 i e above the real axis, andG22 re-
turns the system from timet2 i e to t52` below the real
axis. Thus the Dyson equation itself becomes a matrix eq
tion. However, it turns out that, in the present problem,
results of the full analysis have the sameform as those of the
equilibrium problem, except that all the distribution fun
tions appearing in the final result have to be the nonequ
rium ones. Hence in this section we write the normal se
energy for a system of ions at temperatureT, containing
electron Fermi distributionsn(k,T) and ion distribution
functionsr(k,T), and replace them byn(k,Te) andr(k,Ti)
as appropriate. Also, in the following we replace the tim
interval t82t by v via a Fourier transform, and hence a
sume that steady state conditions hold for time scale la
e
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than the basic scattering times appearing in the self-ene
Further, atomic units are used in the equations:

G~k;k8,v!5G0~k;k8,v!/@11S~k,k,v!#, ~11!

G0~k;k8,v!5d~k;k8!/~v2ek!, ~12!

S~k,k,v!5E GWGdj, ~13!

ek5k2/2. ~14!

The self-energy evaluation needs the full Green functionG,
the screened potentialW, and the vertex functionG. All the
intermediate variables (j) of momentum and frequency ar
integrated out. SinceG is unknown at the outset, in practica
calculationsS is expanded in a series of Feynman diagra
in increasing order of thescreenedinteractionW and the
noninteracting Green functionG0. In the equilibrium prob-
lem theS-matrix development propagates the system in
ground state atT52` to the ground state atT5`. In the
nonequilibrium case the system need not return to the in
state when propagated toT5` ~where the interactions ar
asymptotically switched off!. This difficulty is solved in the
Keldysh method by propagating the system back to its ini
state atT52`. Further, experience has shown that use
results are obtained by taking the vertex function to be un
leading to theGW approximation first studied in detail b
Hedin for the electron gas. In our problem, the self-ene
has contributions from electron-electron scattering and fr
electron-ion scattering. The electron-ion contribution to t
self-energy is of interest to us in the energy-relaxation pr
lem. Of course, it is not clear that aGW evaluation ofS
would be adequate in the electron-ion problem, even tho
it may be the case for electron gases in metals. Our appro
would be to evaluate the self-energy in a generaliz
random-phase approximation~RPA! where realistic pair-
distribution functionsgii (r ) andgie(r ) of the ions and elec-
trons are used instead of the simple RPA forms. The ne
sary all-order static distribution functions can be obtained
suitable density-functional and hypernetted-chain~HNC!
methods@10#. Further, by explicitly constructingweak ion-
electron pseudopotentialsU ie which model the all-order
density-functional calculations, a first order calculation ofS
using the screenedU ie becomes quite justifiable.

The lowest order screenede-e ande-i diagrams are given
in Figs. 1 and 2. Figure 1~a! is just the bare exchange dia
gram, while Fig. 1~b! brings in the density fluctuations in th
electron gas. In thee-i case~Fig. 2!, the propagating electron
emits an ion-density fluctuation and reabsorbs it at a la
time. Thee-i interaction lines are denoted with a star at t
ion vertex. This interaction is screened by electro
polarization loops~shaded loops! and ion-polarization loops
~diagonally hatched loops!. In fact, Fig. 2~c! corresponds to
the coupled-mode case discussed in detail in Appendix
The usual discussions@e.g., in Fokker-Plank theory, Eq.~5!#
include only the screening from the electron subsystem
correspond to Fig. 2~b!.

Density fluctuations are bosonlike, and their contributi
is denotedSB . In thee-e case the propagating electron em
and absorbs an electron-density fluctuation. It also underg
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exchange scattering and hence there is aSx . The diagrams
~at finite temperature! can be evaluated using the Matsuba
rules applied separately to each subsystem, and leads t
same result~in this case! as those obtained from the Keldys
method. Then we have

See5SB
e~K ,v!1Sx

e~K ,v!, ~15!

Sei5SB
ei~K ,v!, ~16!

FIG. 1. The electron in the state (k,v) is exchange scattered t
state (k2q,n) by the Coulomb interaction.~a! Bare exchange in-
teraction.~b! The Coulomb interaction is replaced by a screen
interaction consisting of electron-polarization loops. In actual c
culations the effect of vertex corrections~not shown in the dia-
grams! are approximated via local-field corrections. These diagra
are entirely in the electron subsystem, and do not contribute
energy relaxation.

FIG. 2. The electron in state (k,v) is scattered to state
(k2q,n) by the electron-ion interaction. The ion vertex is indicat
by a star.~b! shows the screening of the electron-ion interaction
the electron subsystem.~b! shows the coupled-mode behavior i
volving the mixing of electron polarizations and ion polarization
the

SB
s 5E Us~q!dq

~2p3!
E

2`

` dv8As~q,v8!Ns~v8/Ts!

D~v,v8!
, ~17!

Sx
e52E V~q!dq

~2p3!
E

2`

` dv8Ae~q,v8!8nk2q

D~v,v8!
, ~18!

D~v,v8!5~v1 id2v82ek2q!, ~19!

As~q,v!52As~q,2v!522 Imxs~q,v!, ~20!

Ns~v!51/@exp~v/Ts!11#. ~21!

In the above equations,Us(q) is thes-e pseudopotential and
hence, fore-e, this is just the bare Coulomb interactio
V(q)54p/q2. The ion-electron pseudopotentialUi(q) will
be more explicitly denoted byU ie(q), and is obtained from
the full nonlinear density response of the ion in its Wigne
Seitz cavity to a uniform electron gas, calculated from t
Kohn-Sham equations@1#. The equations given above are fo
the simpler case of Fig. 3~a!. The coupled-mode form, Fig
2~b! would require the use of the coupled modexcm(q,v)
and the coupled-mode distribution functionNcm(v). This
will be discussed in Sec. II D and in Appendix B.

The noninteracting single electron energyek-q of the in-
termediate statek-q and its occupation numbernk-q occur in
these equations. The bosonic spectral functionsAs(q,v) are
related to the response functions by Eq.~20!, and to the
dynamic structure factors by the equation

Ss~q,v!5
1

2p
Ns~2v!As~q,v!. ~22!

We also note that since the response functions are exp
ible in terms of the inverse dielectric function, the spect
function term can be rewritten to explicitly show that th
potentials occurring in the above expressions are the~dy-
namically! screened quantities. The construction of respo

d
l-

s
to

y

FIG. 3. ~a! Feynman diagram for the lowest order energ
relaxation process corresponding to the simple Fermi golden r
The cross-hatched oval is the electron polarization. The dot-das
line decorated with a star is the bare electron-ion interaction.
screening by the ion subsystem only is shown in~c!. ~b! Diagram
for the coupled-mode energy relaxation. The doubled dot-das
line is the renormalized electron-ion interaction given by the Dys
equation shown in~d!. The diagrams have to be evaluated using
Martin-Schwinger-Keldysh rules for nonequilibrium problems@4#.
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functions, etc., will be taken up below, in our discussion
the dynamic structure factors. At this juncture we note t
the self-energy equations describe the damping of the pr
gating electron occurs via its scattering with thenormal
modesof the system, and not in terms of simple binary c
lisions.

Since we are interested in the damping rate due
electron-ion interactions, the quantity of interest is the ima
nary part ofSB

ei . This can be finally written in terms of a
single-particle electron-ion collision timetS as follows:

1/t~k!S ie522 ImSei. ~23!

However, we are not interested in the number of collisio
but in the energy-relaxation rateĖrlx . Ėrlx for an electron of
energyv5k2/2 and momentumk is obtained by including a
factor ofv8 inside thedv8 integration in Eq.~17!. To obtain
the energy loss from the whole electron subsystem, it wo
at this stage be natural to average over the electron distr
tion. Thus the one-electron self-energy approach would l
us to the estimate forĖe given by

Ėe
S5E dk3

~2p!3
n~k,Te!g~k,Te!, ~24!

g~k,Te!5E dq3

~2p!3
uVei~q!u2E dv8v8 f ~v8,k,q#,

~25!

where

f ~v8,k,q!5d~v2v82ek-q!N~v8/Ti !A
i~q,v8!.

Note that in the above expressions, the electron and
distribution functions contain their respective subsyst
temperaturesTe andTi .

C. Fermi golden rule approach

In the classical Fokker-Plank approach and the quan
self-energy approaches, the damping of asingle test-particle
was calculated first, and then an average over the test-pa
distribution was used to obtain the overall relaxation ra
However, quantum mechanically, the energy-relaxation
of a subsystem with the HamiltonianHs is essentiallŷ Ḣs&,
and this is given by the commutator mean value^@Hs ,H#&,
whereH is the total Hamiltonian. In this problem~as well as
in the previous two approaches!, the nature of the nonequi
librium density matrix used in the calculation of the me
value has to be resolved. However, as discussed in Appe
A, once quasiequilibrium conditions are assumed, the s
functions of each subsystem~at its quasiequilibrium density
and temperature! are easily calculated. Then the lowest ord
evaluation of̂ @Hs ,H#& reduces to a FGR calculation of th
energy-exchange rate between the two subsystems. The
grammatic content of the calculation is shown in Figs. 3~a!
and 3~c!, and should be compared with Figs. 1 and 2, wh
define the self-energy calculation.

The electron-ion interaction Hamiltonian is given by
f
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k,k8,q

U ie~q!ak
†ak8r̃q , ~26!

r̃q5@rq1r2q
† #. ~27!

Here rq5( i j e
iq•(r i2r j ) defines an ion-density fluctuatio

with wave vectorq. Also, r i and r j are ion coordinates. To
simplify the presentation, we assume for the moment that
spectral functionA(q,v) describing ion density fluctuation
has essentially one mode atvq , e.g., the plasmon mode. Th
full mode spectrum will be restored in the final results. L
the electron subsystem go from the initial statek8 to the final
statek, whereby the ion subsystem increases its popula
of density fluctuations fromN(vq /Ti) in the initial state to
N(vq /Ti)11 in the final state. HereN(vq /Ti) is a Bose
factor at temperatureTi , and will be abbreviated byN̄q

i . We
denote the probability of this process byW↑, and have

W↑52puU ie~q!ak,k8~q!u2dk,k8
2

~q!, ~28!

ak,k8~q!5^k,Nq
i 11uak

†ak8r̃quk8,Nq
i &, ~29!

dk,k8
2

~q!5d~ek82ek2vq!. ~30!

This further reduces to

W↑52puU ie~q!hk,k8~q!u2~N̄q
i 11!dk,k8

2
~q!. ~31!

Here hk,k8(q) denotes a density fluctuation in the electr
subsystem arising from the transition of the electron fro
statek8 to statek, with the emission of momentumq. Simi-
larly we have a rateW↓ for the opposite process:

W↓52puU ie~q!hk,k8~q!u2N̄q
i dk,k8

1
~q!, ~32!

dk,k8
1

~q!5d~ek82ek1vq!. ~33!

Thus the energy exchange rateĖrlx is

Ėrlx52pSvquU ie~q!hk,k8~q!u2Pk8@$N̄q
i 11%d22d1~N̄q

i !#.

HerePk8 is the statistical probability of occurrence of th
initial electronic statek8. We interchange the dummy indice
k andk8 in the last delta function, and use the fact that

ek85ek1vq , Pk5Pk8e
~vq /Te! ~34!

to write Ėrlx in the form

Ėrlx52pSvquU ie~q!hk,k8~q!u2@~N̄q
i 11!2e~vq /Te!N̄q

i #

3(
k,k8

uhk,k8~q!u2Pk8d~ek82ek2vq!.

The electron-response function can be written in the form
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xee~ ,q,v!5(
k,k8

uhk,k8~q!u2~Pk82Pk!

v1 id1ek82ek

5~ev/Te21!(
k,k8

uhk,k8~q!u2Pk8

@ek82ek2~v1 id!#
.

The quantity (ev/Te21) is simply the reciprocal of the Bos
factorN(v/Te) at theelectrontemperature. Hence, rewritin
the expression forĖrlx in terms of Imxee(q,v) and simpli-
fying, we have

Ėrlx5SqvquU ie~q!u2@N~vq /Te!2N~vq /Ti !#A
e~q,vq!.

~35!

Up to now we have assumed that the ion-density fluctua
spectral function is of the delta-function form22p@d(v
2vq)2d(v1vq)#. Generalizing to the full spectral func
tion Ai given by Eq.~20!, we can writeĖrlx as an integral
over v over the range2` to 1`. Using the antisymmetry
properties of the spectral functions, etc., the integration ra
can be reduced to the range 0 to`:

Ėrlx5E
0

`

v
dv

2pE dq3

~2p!3
uU ie~q…u2DNeiA

eAi , ~36!

DNei5@N~v/Te!2N~v/Ti !#, ~37!

AeAi5$22 Imxee~q!,v,Te%$22 Imx ii~q,v,Ti !%. ~38!

Thus, when the electrons are hot,Ėrlx is the net energy-loss
rate from electrons, and corresponds to^Ḣe&. If we return to
the single~ion-density fluctuation! mode result@Eq. ~35!#,
and consider the case of a solid, then it describes the en
exchange between electrons and a phonon mode of en
vq and reduces to Kogan’s formula@11#. However, in our
case the ion-density fluctuations are excitations screene
the electron fluid, and hence the ion plasmon is replaced
an acousticlike mode and other features which are best
scribed by the full spectral functionAi . Calculation of the
spectral functions needed in Eq.~36! are treated below in a
separate subsection.

Coupling constants and relaxation times

The final form of the FGR expression, Eq.~36! shows that
the relaxation rates are proportional to the population imb
ance@N(v/Te)2N(v/Ti)# in eachmode. Thus a mode re-
laxation timetqv can be defined such that the rate of rela
ation of a given mode is given by the rate equation:

Rqv5
@N~v/Te!2N~v/Ti !#

tqv
, ~39!

tqv51/@ uU ie~q…u2Ae#. ~40!

We also note that in the limit where the temperatures
larger than any of the mode energies,N(v/T), tends toT/v.
Hence the term (Te2Ti) can be taken out of the summatio
to define a coupling constantḡcc. Thus
n

e

gy
rgy

by
y
e-

l-

-

e

ḡcc5Ėrlx /~Te2Ti !, ~41!

ḡcc→E
0

`dv

2pE dq3

~2p!3
uU ie~q…u2AeAi , ~42!

where the last result is the limiting form. This form@Eq.
~41!# has often been used in analyzing experimental d
together with the added assumption thatḡcc is a constant
within the parameter space of the experiment. In such ca
the energy relaxation per unit mass of matter, or per u
volume is relevant. Note thatĖrlx itself can be specified as
rate for the whole system, per ion, per electron, per u
volume, or per unit mass, as may be convenient, since
may assume that the plasma has length scales significa
larger than an electron mean free path. This assumption
not be valid for dense plasmas formed in semiconduc
nanostructures. The conversion between different ways
specifying the coupling constant is not always simple. F
example, a conversion betweenḡcc/ion and ḡcc/electron re-

quires an evaluation of the ionization balance which givesZ̄.

D. Energy relaxation in a system with coupled modes

If we consider an ion of nuclear chargeZ with effective

ionic chargeZ̄, the ion carriesnb5Z2Z̄ bound electrons.
The nucleus and itsnb bound electrons are at the ionic tem
peratureTi . This ion is also screened by a charge displa

ment Dn of electrons which integrate toZ̄. This sheath of
screening electrons is at the electronic temperatureTe and
adiabatically follows the ion, to within the Born
Oppenheimer approximation. This object, consisting of
nucleus, the bound electrons, and the static sheath of scr
ing electrons, constitutes the neutral pseudoatom~NPA!.
Thus the NPA is a two-temperature object, with the nucle
and the inner core atTi , while the screening sheath is atTe .
It is this screening which converts the ion-plasmon mode
Ti into a two-temperatureion-acoustic mode.

In applying the FGR, it was assumed that the elect
subsystem wasconstructedto be independent of the ion sub
system. This is indeed possible in a mean-fieldstatic sense.
Thus the ion-ion pair potential was constructed to include
existing screening effects of the electrons, and this gave
to the static ion-distribution which existed when the las
pulse arrived to heat the electrons, while the ion cores
mained cold. If the coupling of the electron density fluctu
tionsn(q)5Skak1q

† ak with the ion-density fluctuationsr(q)
become dynamically important, we need a detailed coup
mode description of the system. In such a system we do
have purely electronic or ionic normal modes, and then
energy transfer occurs from the hot modes to the coo
coupled modes of the system. Coupled-mode formation
its own time scales, and hence may not be relevant to v
short-pulsed excitation processes, at least in the initial sta
of the time evolution. When coupled modes are formed, e
tronic density fluctuations mix with ion-density fluctuation
and hence the ion-mode populationN(v) is not simply
N(v/Ti) and has to be determined by two coupled proces
These are~i! electron-ion energy exchange, and~ii ! a return
to equilibrium of the ion populations due to the damping
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the ion modes and their coupling to the rest of the mate
which acts as a heat sink. The latter involves a simultane
solution of a heat-flow equation controlling ion equilibri
tion. To simplify the discussion, in the following analysis w
assume that the ion equilibriation is efficiently coupled so
to maintain the ion subsystem atTi , and that coupled mode
are formed without time scale restrictions. The latter assu
tion is in any case necessary as we do not at present ha
clear picture of the time scales which determine coupl
mode effects. The theory of coupled-mode relaxation is
present a leading edge of research and controversy@23#. In
order to understand the coupled-mode problem let us loo
the density fluctuations in the ion subsystem. The io
response function of the ion subsystem alone is of the fo

x ii~q,v!5x ii
0/@12Vii~12Gii !x ii

0#, ~43!

where Gii (v) is a local-field factor. When the ion-densit
fluctuations couple with the electron-density fluctuations,
coupled-mode function is given by the Dyson equation

xcm~q,v!5x ii /@12$uVie~q!u2xee%x ii#. ~44!

The Dyson equation iterates the ion-response loop and
screened-electron ion interaction@see Fig. 3~d!# to give the
coupled-mode~cm! response functionxcm(q,v). This cm
response function can be rewritten in terms ofx0 and the
e-e, i -i denominators to reveal the denominator

Dcm5DeeD ii2uVie~q!u2xee
0 x ii

0, ~45!

where the denominators are

Dee5@12Vee~k!~12Gee!xee
0 #,

D ii5@12Vii~k!~12Gii !x ii
0#.

In fact, if a two-fluid description had been used from t
outset, the ion-ion response function comes out to be of
form

x ii5x ii
0@12Vee~k!~12Gee!xee

0 #/D,

where the denominators are

D5DeeD ii2Dei ,

Dei5uVeiu2x ii
0xee

0 ~12Gie!~12Gei!.

The dynamical equivalent of the local-field factors are
vertex corrections which can be formally included in t
Dyson equation. In effect,D is simply Dcm inclusive of
local-field factors. The main point about the denomina
Dcm(q,v) is that it replaces individual density fluctuatio
modesvq

s , s5e and i by hybrid modes, some of which ar
electronlike in one extreme, and unscreened-ion-like in
other extreme. The distribution function of this cm system
neither atTe or at Ti . It is not a Bose, Fermi, or Maxwel
distribution, but has the two-temperature form~see Appendix
B!
l
us

s

p-
e a
-
t

at
-

e
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N̄cm~v/Ti ,v/Te!5
N̄~v/Ti !A

i~q,v!1N̄~v/Te!A
e~q,v!

Ai~q,v!1Ae~q,v!
.

~46!

It turns out~see Appendix B! that the new expression for th
energy relaxation rate in the coupled-mode picture is alm
like the simple FGR result. Thus

Ėrlx5E
0

`

v
dv

2pE dq3

~2p!3
uU ie~q!u2DNcmAiAcm

e , ~47!

Acm
e 522 Imxcm~q,v,Ti ,Te!, ~48!

DNcm5N~v/Te!2Ncm~v/Ti ,v/Te!. ~49!

This equation can be cast into a form which is more sy
metrical in electrons and ions by rewriting it in the form

Ėrlx5E
0

`

v
dv

2pE dq3

~2p!3
uU ie~q!u2

DNeiA
iAe

u12$uVie~q!u2xee%x iiu2
.

~50!

Here the coupled-mode distribution has disappeared. Inst
a new denominator which is the denominator of the
Dyson equation, Eq.~45! has taken over the job of screenin
the bare interactions and distribution functions.

1. Dynamic structure factors

In our application of the Fermi golden rule, we hav
treated the electron subsystem and the ion subsystem as
weakly interacting systems coupled via the weak pseudo
tential U ie . Hence if we assume that the electron respo
function and the ion response function can be modeled in
pendently, then we would have, withs5e or i ,

xss5xss
0 ~q,v,Ts!/Dss, ~51!

Dss5@12Vss~q!~12Gss!xss
0 #. ~52!

Here xee
0 is the Lindhard response function whilex ii is its

classical limit usually called the Vlasov plasma-dispers
function. The finite temperaturestatic electron–local-field
factor Gee is available from the finite-temperature electro
exchange correlation function and related studies@12#. In the
case of the ion-response function, it is very important
model the local fields, etc., so as to recover the realistic st
structure factorSii (q) of the ion subsystem. Of course, on
may construct more sophisticated dynamic structure fac
~at least for the ions! by appealing to other methods based
renormalized kinetic theory of fluids, etc. However, we ha
found the simple methods used here to be adequate f
wide class of plasma problems. A discussion of this asp
and comparison of the dynamic ion-structure factor with t
obtained by molecular dynamics simulations was given
Ref. @13#. To this end, we defineFii (q) in the following
ways:

x ii5
x ii

0~q,v,Ti !

12Fii~q!x ii
0~q,v,Ti !

, ~53!



l-
th

ion

-
m

d
e
in

ow
tia
le

t
g
a
u
ed

th
e
,
n

d

u

th
iz
-
-

n

e

nce

ee-
tion
tial

to
ter-

e
ll
n.

r
r

s
se
al
e that

ult
to

the
In
sh-

als

PRE 58 3713ENERGY RELAXATION AND THE QUASIEQUATION OF . . .
Fii~q!51/x ii
01Ti /@ r̄Sii~q!#. ~54!

The last equation holds for the static casev50 whenx ii is
2 r̄Sii (q)/Ti for a classical system. The requiredSii (q) is
obtained from an HNC equation using the pair potential

U ii~q!5Z̄2V~q!1uU ie~q!u2xee~q,Te!. ~55!

Here the~static! electron responsexee and the ion-electron
pseudopotential~see Sec. II D 2! appear.

Once the dynamicalxee andx ii described so far are ca
culated, a reasonable approximate description of
coupled-mode forms can be constructed using the
electron pseudopotentials in Eq.~44!. However, it should be
noted that somestatic aspectsof the coupled modes is al
ready included in the FGR approach which uses dyna
structure factors constructed from the experimental~or HNC-
type! static ion-ion structure factor. The dynamical couple
mode effects play a role in various situations; e.g., th
manifest themselves as ion-dynamical effects in determin
the shapes of spectral lines near the line center.

2. Ion-electron pseudopotential

OnceZ̄ is available at a given ion density fixed byRWS
andTe , we need the ion-electron pseudopotentialU ie for that
electron density and temperature. A pseudopotential all
us to replace the full atomic potential by a simpler poten
which deals only with a limited set of electrons, the so-cal

valence electrons,Z̄ in number, and formally factorize ou
the core electrons attached to each nucleus. Dependin
the application considered,U ie may be chosen to satisfy
class of desirable properties accurately. Thus we may req
that ~i! the pseudopotentialU ie generates the same displac
charge densityDn(k) as the full atomic potential;~ii ! that it
be sufficiently weak so thatDn(k) is obtained within linear
response; and~iii ! that it has the same phase shifts as
original atomic problems, at least for a given range of en
gies. If the phase shifts are to be correctly reproduced
nonlocal, energy-dependent pseudopotential which is
necessarily weak~in the linear response sense! becomes nec-
essary. In such circumstances, it is often easier to work
rectly with the phase shifts and the relevantT matrices. Al-
ternatively, we may choose the pseudopotential to reprod
a specific property, e.g.,~a! the electrical resistivity or~b!
selected peaks in the optical absorption spectrum. In
paper we will study two models for the pseudopotential, v
a ‘‘charge-density-fitted’’~CDF! pseudopotential, which sat
isfies the criteria~i! and ~ii ! listed above, and a ‘‘static
resistivity fitted’’ ~SRF! potential, which satisfies~a!. Unlike
the CDF potential, which fitsDn(q) for a full range ofq
values, the SRF potential is a fit to just one number~or a few
numbers! and is of limited microscopic significance.

A CDF pseudopotentialU ie which satisfies~i! and ~ii ! is
actually a byproduct of the density-functional calculatio
and is given by

U ie~k!52Dn~k!/xee~k!. ~56!

The displaced electron chargeDn(k) appearing above is th

nonlinearcharge pileup around the ion of effective chargeZ̄
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obtained from the density-functional procedure. Thus, si
xee(k) is thelinear response function,U ie(k) is by construc-
tion a pseudopotential which gives the true nonlinear fr
electron distribution in a linear response. Such a construc
does not imply that the phase shifts of the pseudopoten
U ie are the same as that of the full atomic potential.

Since we are studying a collisional property related
transport, we also consider the SRF pseudopotential de
mined so that the mean free path calculated usingU ie(k) in
the Ziman formula is identical to that given from th
T-matrix form of the Ziman formula which uses the fu
atomic phase shifts from the density-functional calculatio
That is, we require that

f T5E
0

`

d«
dnFD~«!

d« E
0

qm
q3T~q!Sii~q!dq, ~57!

f pseu5E
0

` q3S~q!Sii~q!dq

†11exp$b@«~q!/42m#%‡
, ~58!

f T5 f pseu. ~59!

In the above,nFD(«) is the Fermi-Dirac occupation numbe
for a level of energy«. The energy« determines the uppe
limit of the momentum transferqm for theq integration to be
(2/\)A2m«. TheT matrix T(q) is the elastic scattering cros
section~ESCS! calculated from the density-functional pha
shifts @15#, while S(q) is the ESCS calculated from the loc
pseudopotential whose parameters are adjusted to ensur
f T is equal tof pseu.

Rather than using a numerical table that would res
from, say Eq.~56!, the CDF pseudopotentials were fitted
the forms

U ie~k!52V~q!Z̄@DJ~qRc!1~12D !cos~qRc!#K~q!,

J~x!5sin~x!/x, ~60!

K~q!5@11l~q/q0!2#/@11~q/q0!2#.

HereD is a well-depth parameter andRc is a cutoff radius,
while l andq0 provide additional adjustments to theq de-
pendence of the basic Ashcroft form. Some examples of
pseudopotentials used in this work are given in Table I.
parametrizing the SRF potential, we used only the bare A

TABLE I. Charge-density-fitted ion-electron pseudopotenti
for Al ions as a function of temperature~eV! in a plasma at the
melting-fluid density (RWS53.121 a.u.!, i.e., unit compression. The
well-depth parameterD, the pseudocore radiusRc , and the param-
etersl andq0 are defined in Eq.~60!, and are in atomic units.

T ~eV! Z̄ Rc D l q0

2.5 3.0004 1.5417 0.7228 1.08 1.28
5.0 3.0004 1.5419 0.7687 1.26 1.40
10.0 3.0230 1.5397 0.8862 1.97 2.04
20.0 3.5997 1.4864 1.0010 3.56 3.85
30.0 4.3479 1.4479 1.0801 3.35 3.37
40.0 5.1927 1.4153 1.2480 1.35 1.31
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croft form @i.e., K(q)51#, but introduced an electron effec
tive massme* into the screening function defining the ESC
viz., S(q) appearing in Eq.~58!, as in Ref.@16#.

III. CALCULATIONS

In this section we present our numerical calculations
the energy-loss rate from a subsystem of hot electrons in
acting with a subsystem of cold ions. Such a plasma can
generated using short-pulse laser techniques, where the
duration is smaller than the relevant time scales of the io
Thus the conditions can be arranged so that the ions rem
essentially near the melting temperature of the material
most at solid density, while the electrons absorb energy
reach extremely high temperatures. The properties of su
highly nonequilibrium system can be probed using a we
probe laser applied within a succession of time delays. M
such experiments have been reported, especially for Al
the recent literature@14#. Hence we present calculations for
two-temperature Al plasma, where the ions are essential
the melting point~943 K, 0.0813 eV! and at a density of
2.374 g/cc. This corresponds to a Wigner-Seitz~WS! radius
RWS of 3.121 a.u. ~while the room temperatureRWS is
2.98228 a.u.!. ThusTi is 0.0813 eV, andTe can be increased
by raising the amount of energy deposited by the laser pu
As Te is increased, the heated dense electrons interact

the core electrons, and the effective ionizationZ̄ increases

upwards from the value ofZ̄53 at the melting. We calculate

Z̄ by immersing an Al nucleus together with its Wigner-Se
cavity in an electron gas at the required temperatureTe , and
self-consistently solving a Mermin-Kohn-Sham proble
@10#. An ion temperature does not directly enter into th
problem at this stage of the analysis, except via the choic
the Wigner-Seitz radius which depends on the ion dens
No formal problem associated with the question of the ap
cability of density functional theory to a nonequilibrium se
ting arises in this calculation. Some values of the calcula

Z̄ is given in Table I. OnceZ̄ is known, the electron densit

n̄ at Te is simply Z̄r, and the electron-sphere radiusr s is

RWS/Z̄1/3.
The numerical calculations require the two dynamic str

ture factorsSe(k,v,Te) andSi(k,v,Ti). The dynamic struc-
ture factor of the electron subsystem is immediately av
able from the imaginary part ofxee(k,v,Te) using the
temperature-dependent local-field corrections obtained f
the derivative of the finite-temperature exchange-correla
potentialVxc(r s ,Te) of density-functional theory@12#. Fig-
ure 4 showsSe(k,v,Te) at 20 eV. As expected, the electro
plasma mode is well defined for small wave vectors, a
broadens out for large momenta. In calculatingSi(k,v,Ti)
we first construct thestatic S(k) of the ions using the ion-ion
pair potentialU ii (k,Ti) obtained fromU ie(k,Ti) using Eq.
~55!. Thus the electron temperatureTe does notenter here,
since the ion subsystem has not come to the temperatu
the electrons, but was formed when the system was initi
in equilibrium at the temperature of the ions,Ti . The static
S(k) is calculated using a hypernetted-chain procedure in
sive of a bridge term, for a fluid in equilibrium atTi . This
calculatedS(k) of liquid Al at its melting point agrees very
,
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well with the experimentalS(k) of Refs. @17,16#. The next
step in the calculation is to use Eq.~53! to obtain the dy-
namic structure factor of the ion subsystem. The results
this calculation are shown in Fig. 5. The figure shows h
the bare ion-plasma frequency is converted to a lower-ene
ion-acoustic mode which depends nearly linearly on
wave vector. As expected, the width~damping! of the mode
also increases with the value ofk.

Using these results and Eqs.~36! and~50!, we can calcu-
late the energy-relaxation rates within the simple FGR a
also for the coupled-mode approach. The Spitzer-Brysk-t
result@Eq. ~10!# is easily calculated, and does not require t
dynamic structure factors and other machinery that we h
set up. Figure 6 displays the energy-relaxation rates ca
lated from these equations as a function of electron temp
tureTe , while the ion temperature remains fixed at the me
ing point of liquid Al. The Spitzer-Brysk curves are abo
two orders of magnitude higher than the FGR estima
which is also about an order of magnitude higher than
system with coupled modes. The energy-loss rate~ELR! cal-
culated using the CDF pseudopotentials is shown as a s
line, while the results of the SRF pseudopotential are sho
as a dashed line. These results show that the CDF and
approaches are in satisfactory agreement. Hence we fee

FIG. 4. The dynamic structure factorSe(k,v,Te) of the electron
subsystem at 20 eV. The different curves are for indicated value
the wave vectork in units where 2kF is 80. The electron plasma

frequencyvpl
2 54pn̄/me is also shown. The Fermi energy isEF .

FIG. 5. The dynamic structure factor of the ion subsystem, i
Si(k,v,Ti), is shown as a function ofv andk. The bare-ion plasma
frequency is also shown for comparison.Ti is the melting point
~m.pt! temperature, 0.081 eV.
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the ion-electron interaction potentials are adequa
handled, and that a full phase-shift approach is probably
necessary. The coupling constants corresponding to the
are given in Table II, and show the same strong differe
between the FGR-type results and the estimate from
Spitzer-Brysk approach. The even greater slowing down
the relaxation rate under coupled-mode formation is w
one would expect on simple physical grounds. One mi
associate a ‘‘temperature’’Tmode for each mode, using the
distribution given in Eq.~46! by writing

N̄cm~v/Ti ,v/Te!5N̄cm~v/Tmode!,

and attempting to understand the temperature distributio
the coupled modes. The coupled modes cmh replace each
hot-electron mode by some what less hot cm mode at a t

FIG. 6. The energy-relaxation rate~atomic units! calculated
from various models. The curve labeled FGR is the Fermi gol
rule calculation, Eq.~36!. The coupled-mode calculation Eq.~50! is
labeled CM. The solid and dashed lines are the results from
CDF and SRF pseudopotentials. The Spitzer-Brysk-type curv
based on a form of the collision frequency@Eq. ~10!#, which re-
duces to that of Lee and More ifTi 5 0. The value of the effective

ionic chargeZ̄ applicable to various regimes is also indicated.

TABLE II. Calculated values of the electron-ion coupling co

stant ḡcc for Al at normal density, and withTi50.081 26 eV. Re-
sults from the Spitzer-Brysk~SB!, Fermi golden rule~FGR!, and
coupled mode~CM! calculation are given in W/K/cubic meter.

T ~eV! SB/1020 FGR/1017 CM/1016

3.0 0.04972 0.1691 0.1744
4.0 0.09383 0.1795 0.2048
5.0 0.1467 0.1918 0.2294
7.0 0.2603 0.2050 0.2475
9.0 0.3422 0.2460 0.2416
10.0 0.3634 0.3337 0.2374
15.0 0.4234 0.2957 0.2994
20.0 0.5099 0.3538 0.3157
25.0 0.5816 0.4372 0.3336
30.0 0.6675 0.5111 0.3456
35.0 0.7688 0.7405 0.3416
40.0 0.8850 1.4210 0.2816
ly
ot
R
e
e
f
t
t

in

-

peratureTmode, made up of a mixture of~hot! electron-
density fluctuations and~cold! ion-density fluctuations. Simi-
larly the cold-ion modes are replaced by less cold cm mo
cmc . The energy relaxation between cmh and cmc is less
efficient than the unrenormalized hot-electron modes
cold-ion modes. However, it is not easy to determi
whether such coupled modes are important or not in de
plasmas, and what their relevant time scales are, at
present stage of our research. The coupled-mode proble
a nonlinear effect going beyond the first-order Fermi gold
rule result, and at this stage we have no clear understan
of other nonlinear effects and the time scales required for
coupled-mode picture to survive. However, there is no qu
tion that the FGR result by itself predicts a much slow
energy relaxation of hot electrons in dense plasmas than
been anticipated on the basis of Spitzer-like approach
Some of the recently available experimental results do se
to favor relaxation-rate constants which are about an orde
magnitude smaller than anticipated@18,19#. However, the
analysis of the experimental data needs more careful
case-specific calculations.

In this paper we have presented results for a system of
electrons and cold ions. The case of cold electrons and
ions involves a different set of calculations where the hig
temperature ion-structure factors, etc., have to be calcul
using pair potentials constructed from pseudopotent
screened by cold electrons. Although the electrons are c
they can still follow the ion motion, and hence electron
self-consistent field calculations will be needed in setting
the quasi-EOS. Another interesting problem is the c
where the hot-electron distribution has a super-hig
temperature ‘‘spike’’ imposed on the underlying distributio
at Te . These issues will be taken up in future work using t
same formal methods.

IV. CONCLUSION

The results presented show that the usual Spitzer-Bry
type calculation badly overestimates the FGR result in
regime studied here. The collective nature of charged flu
is ignored in the Spitzer-Brysk form. The extremely we
overlap between the spectral functions of the electr
density fluctuation~plasmonlike! and ion-density fluctuation
~acoustic excitations! is the cause of the extremely slow e
ergy exchange between the two subsystems. The inclusio
coupled-mode effects leads to a further decrease of the
laxation rate, and it is entirely possible that mode-coupl
effects could be quite important in many dense-plasma s
ations. Currently available time-resolved experimental me
ods would be able to probe the interplay of time scales, m
coupling, mode damping, and other fascinating aspects
nonequilibrium dynamics of these systems, and obtain r
istic values of the energy-relaxation coupling constants. J
as theory can guide certain experimental investigations, n
equilibrium statistical theory urgently needs good expe
mental sign posts to guide its further development.
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course of this work. We thank Hugh deWitt for drawing o
attention to Ref.@20#.

APPENDIX A: THE QUASIEQUATION OF STATE

In this appendix we review the concept of a ‘‘quasiequ
tion of state’’ for a two-temperature plasma in a steady st
If the ion subsystem and the electron subsystem are assu
to be completely independent~i.e., ignoring the ion-electron
interaction term, giving no energy relaxation or coupl
modes!, then a fully decoupled treatment is easily carried o
@20#. In reality, the main difficulty is to include the interac
tion part of the Hamiltonian for which a single temperatu
cannot be assigned. Further, the usual statistical mecha
approaches~at equilibrium! require a coupling-constant inte
gration over the interactions in obtaining thermodynam
quantities. In the work of Boercker and More, the validity
their assumed Eq.~1.1! was not examined~say, using
Zubarev or Keldysh methods!. Their Eq.~1.1! arbitrarily se-
lected a temperature for the electron-ion interactionVei
which is included in the partition function. They treat th
electron-ion interaction only to second order. The ions
assumed to be point ions of fixed charge to be determine
some other theory. The electrons are also assumed t
classical. In reality, the two-temperature quasi-equation-
state has to address quantum electrons which form bo
states in a manner different from an equilibrium plasma, a
leads to an ionization balance which has to be explic
calculated for the givenTe and Ti . Boercker and More
present expressions for the dynamic structure factors~in the
classical limit!, but their numerical computability is not dem
onstrated and they are not used in subsequent theory.
that our dynamic structure factors are ‘‘all order’’ in th
electron-ion interaction, in that the pseudopotentials w
constructed from all electron calculations sorting out
bound states and phase-shifted continuum states. Bore
and More did not use their dynamic structure factors to d
cuss electron-ion equilibriation. They used single-parti
theory~‘‘stopping-power arguments’’!, and presented a han
made recipe for extending the Coulomb logarithm to stro
coupling plasmas.

These difficulties~i.e., inclusion of bound-state formation
strong ion-ion coupling, nonequilibrium effects, and qua
tum effects! can be overcome within a certain approxima
point of view ~quasiequilibrium density matrix in the sens
of Zubarev! if we suitably generalize the method given by
for the first principles calculation of the EOS. There we us
a density-functional approach where the interacting syst
are replaced by noninteracting Kohn-Sham systems mad
of electrons and neutral pseudoatoms. To the extent tha
effect of one subsystem with its interactions, fluxes and c
rents could be regarded as providing an external potentia
the other subsystem, a Mermin-Kohn-Sham-type treatm
can be applied to each subsystem, even though the two
systemstaken togetherare not in equilibrium. Hence we
write the quasifree energy per ion of the total system as

F5F id1Feg1Fem1Fxs. ~A1!

The first term is the ideal ion-fluid contribution, and depen
only on the ion temperatureTi , ion massM , and the ion
-
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density r̄. Here Feg is the free energy of the electron ga
inclusive of electron-electron interactions, and depends o
on Te , and the electron densityn̄. Hence this too can be
unambiguously evaluated@1#. The remaining two termsFem
andFxs are the energy of ‘‘embedding’’ the ions in the ele
tron gas, and the excess free energy of the fluid. Both th
terms involve the interaction term of the Hamiltonian a
require some care in the nonequilibrium situation. It tur
out that in the calculation ofFem for a single ion we invoke
the ion temperature and ion density only to define
Wigner-Seitz cavity for placing the nucleus of the ion. T
nucleus and the cavity are now placed in the electron ga
a temperatureTe , and the Kohn-Sham procedure is carri
out. Thus in this calculation also, no formal problems ar
and the conditions for the applicability of the Mermin-Koh
Sham procedures hold. Similarly, this calculation provides
with the electron charge displacement around each ion,
hence the pseudopotentialU ie(Te) for the ion at the electron
temperatureTe . However, if the experiment is such that th
initial state of the system determines the ion distributio
function and if this remained essentially unchanged dur
the short laser pulse, then we needU ie(Ti), i.e., at theion
temperature, to determine the ion-ion pair potential that d
termines the ion distribution. Thus the excess free energ
the fluid can be evaluated via HNC equations as in Ref.@1#,
and Fxs entering into the quasi-EOS is theFxs evaluated at
Ti .

Once the expression for the quasi-EOS free energy
been written down, there is no overall free-energy minimu
principle that can be invoked to evaluate the ion-spec
compositions, etc. However, when the time scales of
problem are such that the ion subsystem remains unchan
all the ion-composition parameters retain their initial val
within the given time step. On the other hand, the elect
time scales are assumed to be quite short in compariso
the time step, and hence wecanminimize the expression fo
the quasi-EOS free energy with respect to the electron d
sity n̄, subject to the constrain of overall charge neutrality
we consider a single-species fluid or an average-atom mo
this simply means thatn̄ variations are exactly compensate

for by changes in the degree of ionizationZ̄. Further, a
Kohn-Sham equation rigorously exists whenever the va
tion with respect ton̄ is legitimate within the given time
scales.

APPENDIX B: KELDYSH TECHNIQUE FOR COUPLED
ELECTRON-ION MODES

The standard Keldysh method deals with a sing
temperature density matrix and its evolution~possibly to a
two-temperature steady state, etc.! in time. The analysis us-
ing a two-temperature model from the outset is less clear,
we assume that the quasiequilibrium density matrix
Zubarev@5# can be employed to justify the approach. Als
the more formal issues of the existence of a Wick theore
etc., were discussed by Lei and Wei@21#. The diagram of
Fig. 3~a! shows an electron-polarization fluctuation loop wi
the vertices connected by the ion-electron interactionU ie(q).
When coupled modes are formed, this interaction itself
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quires insertions of the electron-polarization loop, and a n
vertex function L̃(q,v) is generated. We distinguish th
232 Keldysh matrix Green functions by placing a tilde o
the Green functions, etc., as inG̃. Thus the electron Gree
function G̃ and the ion-density Green functionB̃ are @22#

G̃5S gr ḡ

0 gaD and B̃5S br b̄

0 baD ,

where the superscriptsr and a denote the retarded and a
vanced functions. The overbars ong andb indicate a corre-
lation function. The electron propagators have the form

gr ,a~k,v!5~v2ek6 ige!
21,

ḡ~k,v!5@112N~v/Te!#
21~gr2ga!.

For brevity of presentation, we take the ion-density fluctu
tion propagators to have a single mode~e.g., an ion-plasmon
mode or an ion-acoustic mode with an excitation energyvq).
Then the analysis becomes analogous to the problem of e
trons interacting with a single phonon mode@24#. We have

br5~ba!* 5~v2vq1 ig i !
212~v1vq1 ig i !

21,

b̄5@112N~v/Ti !#~br2ba!.

The convolution of an electron propagator with a hole pro
gator gives the electron-density-fluctuation loop, and we
note its iteration byxe . Then the matrix-vertex function
L̃(q,v) describing the electron-ion interaction is of the for

L̃5( 0
lr

la
l̄ ), where

l r~v!5uU ie~q!u2 Imxe~q,v!,
,
da

s

s

w

-

c-

-
-

la~v!5l r~2v!,

l̄522uU ie~q!u2 Imxe~q,v!@1112N~v/Te!#.

The matrix Dyson equation defining coupled-mode form
tion is

B̃cm5B̃1B̃L̃B̃cm. ~B1!

The expressions for the coupled-mode propagators are
seen to be

bcm~q,v!5br~q,v!/W~q,v!,

b̄cm5@ b̄1ubr u2l̄ #/uWu2,

W512br uU ie~q!u2Imxe~q,v!.

The correlation functionb̄cm provides the coupled-mode dis
tribution function. The energy relaxation rate is obtained
evaluating Fig. 2~b! using the expressions for the cm Gre
functions given above and the standard diagram rules@4#.
Thus

Ėe5SuU ie~q!u2E dvn

~2p!2
v Tr@Zkk8~k,q,v,n!B̃cm

kk8~q,v!#,

Zkk85ḡkḠ~k,n!t1gk8G̃~k2q,n2v!.

Here g and ḡ are 232 matrices expressed in terms of th
Pauli matrixest and defined by Rammer and Smith@4#. Us-
ing the random-phase-approximation form for the elect
term and evaluating then integration, we obtain the energy
relaxation rate given in Eq.~50!.
ay,
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