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A first principles approach to the equation of st@DS and the transport properties of an interacting
mixture of electrons, ions, and neutrals in thermodynamic equilibrium was presented recently in Phys. Rev. E
52, 5352(1995. However, many dynamically produced plasmas have an electron tempefatdifierent
from the ion temperatur&; . The study of these nonequilibriutnon-eq) systems involvesi) calculation of
a quasiequation of statquasi-EO$ and the needed non-eq. correlation functions, e.g., the dynamic structure
factorsS,¢ (k,w), wheres is the species index; an(d) a calculation of relaxation processes. The energy and
momentum relaxations are usually described in terms of coupling constants determining the rates of equilib-
riation. Simple Spitzer-type calculations of such coupling constants often use formulas obtained by averaging
the damping of asingle energetic particle by the medium. However, a different result is obtained for the
energy-loss ratédH./dt) of the electron subsystem when calculated from the commutator mean value
([He,H]-), whereH, andH are the Hamiltonians of the electron subsystem and the total system. This result
corresponds to energy relaxation via the interaction ofrtbienal modesf the hot system with theormal
modesof the cold system. Such a description is particularly appropriate for dense plasmas. The evaluation of
the commutator mean values within the Fermi golden (BIBR), or more sophisticated Keldysh or Zubarev
methods, yields formulations involving the dynamic structure factors of the two subsystems. The single-
particle and normal-mode methods are conceptually very different. Here we present calculations of the energy
relaxation of dense uniform two-temperature aluminum plasmas, and compare the usual Spitzer-type estimates
with our more detailed FGR-type results. Our results show that the relaxation rate is mo@ntoaser of
magnitude smallethan that given by the commonly used theor{&1063-651X%98)02309-5

PACS numbegp): 52.25.Kn, 52.25.Gj, 05.30.Fk, 71.10w

[. INTRODUCTION guasiequation of statguasi-EO$for a system in quasiequi-
librium is not immediately evident. First of all, the meaning
The advent of short-pulse lasers has extended the laboraf the quasithermodynamic variables has to be addressed.
tory study of nonequilibrium systems to regimes which wereThen their determination from a rigorous nonequilibrium
not accessible by standard shock-wave techniques. Thechnique needs to be linked with energy and momentum
shock technique enables one to heat the ions to high temmelaxation calculations. These are of courss new prob-
peratures, while the electrons remain relatively cool since théems, and various classical and quantum methods, as well as
transfer of energy from the ions to the electron subsystem isimplified approaches, have been developed over the years
very slow. On the other hand, the laser couples strongly t¢2,3]. Some of the modern, rigorous methods began with the
the electrons and heats the electron subsystem, while the iamork of Refs.[4,5], where it was shown how the usual
subsystem remains cool within the time scales appropriate t8-matrix techniques can be extended to nonequilibrium prob-
the electronic equilibriation. Thus the two experimental tech4dems. This method was neatly expressed by Keldysh, who
nigues complement each other in providing systems witlpresented a simple contour scheme for the implementation of
cold electrons and hot ions, or hot electrons and cold ions.the approaches of Ref§4,5]. Developing on the ideas of
The detailed thermodynamic description of an equilibriumBogoliubov, Zubarev presented an extension of two-time re-
system fronffirst principlesis itself a very formidable prob- tarded Green functions for application to nonequilibrium sys-
lem, since detailed atomic physics for a mixture of ionizationtems. In practice, the latter approach is harder to apply nu-
states of ions in plasmas have to be carried out selfmerically, but gives an insightful understanding of the
consistently, determining the bound states, ionization balmeaning of various quasithermodynamic variables in quasi-
ance, equilibrium correlation functions, etc. We have re-equilibrium systems. The essential point is that in an equi-
cently presented such a study of the equilibrium equation ofibrium system, just as the chemical potential is the
state(EOS of Al from relatively low-temperature conditions Lagrange multiplier for the conservation of particle number,
to those of high temperatures and high compress[dhs the temperature variablg8& 1/kgT) is simply the Lagrange
However, the methods to be used for determining themultiplier that expresses the conservation of the total energy
(i.e.,(H)). It is not an expression of some “average kinetic
energy,” etc., even though it does play that role in some
*Electronic mail: chandre@cm1.phy.nrc.ca model systems. When we go to a system in some quasiequi-
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librium state, it may turn out that the energy of the electrontheir response functions, etc., can be calculated without ref-
subsystem{H,), is conserved for certain time scales, erence to the dynamics of the other system, although static
while the energy of the ion subsyste(i; ), is conserved for mean-field effects of the other system could be incorporated.
other time scales;. Under such conditions, we can intro- The construction of the ion-ion pair potential, which involves
duce two Lagrange multiplier§, and g; to insist on the the screening pf the ions by_the free el_ectrons, is an example
conservation of subsystem energies within their respectivel Such a static effect that is already included. A more so-

time scales. The interaction between the two systems giveplhisticated calculation includes the dynamical interaction be-
by H,, cannot be assigned to eithgt, s=e andi. Ini- tween the two subsystenfise., a coupled-mode description

tially, when the external perturbatiofs.g., the energy depo- S}ndf.th'sl’ canr|1tot Ef Freacljted'usn:(g ltdhe :1: GRihblg wle SEO\I’.thhat
sition from a laserare switched on, the system evolves very € linal result, obtained using Keldysh metnods, Jooks fike a

rapidly, and it is often impossible to identify these conserveo’:GR_reSUIt V.V'th renormalized quantities. These pletaﬂed cak-
quantities. However, once a quasiequilibrium state is atculations ofEg, are now used to compar®) the E,, pre-

tained, it is possible to identify quasiconserved quantitieglicted from a simple prescription based on the approaches of
like B., Py, or Q. representing the pressure and the quasith>Pitzer[2], Brysk[3], and Lee and Morg6].
ermodynamic potential of the subsystem

In this paper we assume that the nonequilibrium evolution Il. THEORY

O_f the system from some initial state to some qu_aS|eqU|I|b— In this section we review the theory of energy relaxation
rium state, with given subsystem densitigs and inverse iin four schemes, where the first two usesiagle test
temperature@,, has been achieved, and that their values are article as the starting point of te,, analysis
known. For simplicity, in this work we assume that there arePd" X ing p X ysis. | .

(i) Classical collisional approachThe simplified classi-

just two subsystems, i.e., electrons and one kind of ion. Us- . . .
al approach considers the energy exchange in a binary col-

ing the quasiequilibrium system parameters as inputs, wg". ST .
calculate the energy relaxation of the interacting subsystem sion, and takes an average over the distribution functions to

. o . I ; obtain the energy-relaxation rate. Such a discussion was
via the traditional single-particle stopping power approachTound by Spitzef2]. The effects of partial electron degen-

as well as from the full many-body approach. In the latter racy were treated by Brydi] within the same approach.

approach it turns out that the energy relaxation occurs fro ) .
the normal modes of the hot subsystem to the normal modgisokker-PIank-Langevm-type theory provided a more general

of the cold subsystem. Thus the calculation of the dynami nd sophisticated treatment of this problem in terms of the

structure factor$.(k, o, T.) andS (k,o,T;) of the two sub- riction and diffusion coefficients of a test particle in a
e 1 1 e ) » b

systems becomes an essential step. Another important aSp%?srrgjr?étiSc;Csthr?ebnee;eel!s?elzcgS;Iizgth\?sritohfsasdl;/rinrtl?lgei tgﬁ;
of the relaxation calculation is the ion-electron interaction PP 9

: : ; : conservation properties.
potentialU;., which depends in a complicated way on the ~~ = ) . . _
internal bound-state structure of the ions. Thus an atomic- (i) Self-energy approactithe imaginary part of the self

physics problem where the electron-ion coupling as well agheray1s the stopping power sometimes used for calculating

the ion-ion coupling is strong has to be solved to all orderseNeray relaxation. Hence we develop the formal expressions

and then the necessary electron-ion pseudopotentials havefor the damping estimated via the self-energy, and also note

be constructed. That is, we assume that the ionization equ\%ee iﬁgi?fgevt\’:eh dtihae rgasssi/(\:/ﬁlic'r:wogrli(segzsgii(nmfézggiirflst%e
librium between the bound electrons and the free electron 9 P 9

: ; >I€CONPGR as well as coupled-mode calculations. Here we give the
occur rapidly enoughcompared to electron-ion equilibria-

tion), so that the core electrons at each temperature can ggrmal generalization to two-temperature systems, but nu-

projected out via the construction of the pseudopotentialmencal calculations are not presented as the formal expres-

Most of these steps are identical to the ones used in th%ions derived here are enough to show the limitations of the
. P . ; method.
equilibrium EOS calculation[1] However, some pertinent (iii) Fermi golden rule approachThe quantum mechani-
nonequilibrium issues are addressed in Appendix A. Hence ' 9 bp A
. ; . : . “Cal calculation of the energy-relaxation rate of electrons
the main focus of this work is the calculation of relaxation ] . . o
rates. In Sec. II, we describe our two-temperature theory of &2, involves the evaluation afH,), which is given by the
neutral, spatially uniform plasma, and assume that the jo§ommutator averagg/He,H]-), whereH, andH are the
densitv s and the effective ionic chardg. as well as the Hamiltonians for the electron subsystem and for the total
"yp Ive loni 9E, w . system. It can be shown that this leads in the simplest ap-
temperature§; and T, of the ions and electrons are given,

o ) roximation he FGR calculation of the energy-relaxation
and that the initial source of excitatiga.g., the intense laser proximation to the FGR calculation of the energy-relaxatio

field) is switched off. We also assume that charge neutralit rate. Here we assume that we have two "weakly coupled”
. : ' 9 ysubsystems whose response functions can be calculated in-
exists at least in a global sense, and hence the electron d

_ il ating e('j‘épendently of the dynamics of each other, and that the FGR
sity n is such than=Zp. With these as input, we set up the gives the interaction rates. This is conceptuadlijferent
calculation of the energy relaxation rat&,() using the from the rate calculation via single-particle kinematics, even
Fermi golden ruldFGR). This calculation involves the com- if the two calculations lead to similar results in suitable lim-
putation of frequency dependefite., dynami¢ structure its. The FGR calculation of the relaxation rate usesrtiogle
factors of the electron fluid and the ion fluid, using the inter-spectrumof the plasma, and holds in general, irrespective of
action potentials obtained from the detailed microscopic dewhether the modes are strongly correlated and collective, or
scription of the plasma. In the FGR approach, the two subsingle-particle-like. Numerical results will be presented
systems are assumed to be “independent” in the sense thatithin this scheme.
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(iv) Coupled-mode energy-relaxation ratén this ap- D(v)=(AVAV)/T. (4
proach, we do not assume that the electron subsystem and
the ion subsystem are “independent” to the extent that theiThe friction coefficients can be written as
excitations can be treated independently. That is, we include
the interactions between the density fluctuations of the elec-
tron subsystem and the ion subsystem at the dynamical level.
The FGR is not priori applicable to systems with coupled
modes. However, use of other metho@sg., the Keldysh
technique shows that the final results have the form of a
renormalized FGR. The coupled modes play the role of a F,=129-D(v)/av,
hot-ion bottleneck to relaxation, and slow the relaxation in a
nonlinear way, and become important for certain time scalesand depends on the imaginary part of the dielectric function,
Numerical results for this case are also presented. Furthess in the usual stopping power treatment. In the abEyds
the last three(quantum calculations hold in the classical the charge of the test particle. The diffusion-coefficient term

regime as well and make contact with the Fokker-Plank-typ@an also be expressed in terms of a dielectric tensor as
approaches which are limited to the classical regime.

Although we use atomic unitee7 =me=1) in this pa- 27-,22 e —, o Fi (V) Ok (v=Vv")]
per, sometimesn, and other quantities will be displayed D(v)= j 3 [ZiV(K)7Kk ] >
when this is helpful. Temperaturd@s and T, will be in Har- (2m) |e(k,k-v)]
tree energy units or in eV. The effective ionic chaiyenay

sometimes be denoted & This equation explicitly involves the chargg and the
distribution function f¢(v) of the field particles. For the
present we note that these expressi@isen averaged over
the particle distributionsyield an energy-relaxation rate for
Let us first review the usual method of calculation of theg system of electronsest particlesand ions(field particles.

energy relaxation rate of a fast particle, calletéstparticle, |n the high-temperature limit, the following result due to
interacting with a set dfield particles. The typical time scale gpitzer is recoveref®]:

7, for the single-particle distribution functions to relax is of
the order of~\/v, where\ is the mean free path andis (dTe/dty=—(me/M;)(3/2)(Te—T))/ 7o, (6)
the mean velocity. The typical relaxation times for correlated
processes involving-body effects may be denoted by. If ~ WNereé
we consider the pair-distribution function and related plasma

F(v)=F+F,,

k3
) [V(KkIIm[e(k,k-v)™'],

77_3

— d
Flz(zf/m)f(2

m2

®

A. Fokker-Plank method and simplified classical approaches

pl rx _ 4312 / 2
oscillation modes, then;, is of the order of\ /v, where\ p 7er =T (83)(2m)pZiInA, 0
is a screening length which becomes the Debye length in . _ _
weakly correlated plasmas. As long as> 7, etc., the T=[Tet Ti(me/Mi) ], ®
single-particle collision picture can be used. But in strongly IN(A)=IN(\p /A i) - 9)

coupled plasmas\, becomes comparable to mean interpar-
ticle distances, and2 may no Ionger be small in Comparison In these and other equatioﬁ'slandTe arein energy unitii
to ;. Thus, while the single-test-particle approach may beandM; are the ion charge and mass, respectively. The Cou-
valid in some regimes, it should become inapplicable in sufiomp logarithm In(\) involves the ratio of the average clos-
ficiently dense plasmas. In fact, tfiesum rule is essentially est distance of approach, i.&.y;, and the Debye screening
exhausted by the weight of the plasma peak even in dilutgangth )\, . Note that for a classical plasma of particles with
plasmas, and this emphasizes the inadequacy of the singlgp internal structure, the internal enerfy of the species
particle picture. is 3T, and hence the temperature relaxation rate is essen-
In the single-particlénonquantumapproach we consider tja|ly the same as the energy relaxation rate. But in a more
the kinetic energyv of a test particle, vizw=3mv?. Itsrate  general approach the internal energies of the ion subsystem
of Change, for a “Brownian-like” time scale, is the mean and the electron Subsystem in a nonequi"brium Set(tim,
change(Aw)/ 7 arising from the velocity changAv during  quasiequations of state for each spec&e needed to con-

the time intervalr. The velocity changes arise from colli- vert the energy-relaxation rate to the temperature relaxation
sions and can be expressed via the friction coeffici{w) rate.

and the diffusion coefficienD(v). Thus[7] The above equations, viz., E@), etc., hold in the regime
where the distribution functions are completely Maxwellian.
dw/dt= T<|V+ AV(7)|2—[v|DI T (1) When degener_acy e.ffe.cts are to be taken i_nto acd@jnit
2 is usual to write, within some approximation, the energy-

relaxation rate in terms of a suitable electron-ion collision
m frequency (v, Many approximate forms fotv5) are
=mv-F(v)+ §Tr D(v), (2 found in the literature, often with the ion temperature set to
zero[8]. Here we use a generalization which reduces in the
T;=0 limit to the collision frequency given by Lee and More
F(v)=(Av)/, 3 [6]. Thus
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3T 14 e e than the basic scattering times appearing in the self-energy.
0= FoaulTe), (10)  Further, atomic units are used in the equations:

® 2mey2Zn In(A)
G(k:k',0)=Gok:k , 0)/[1+3(k k)], (1D

where
) GOoUk:k',w)=8(k:k" ) (w— €, (12
Fj(n)zj tidt/[1+exp(t—7)],
’ E(k,k,w)=f GWI'd¢, (13
In(A)=2In[1+\3/A\2,],
e=k?/2. (14)

Ap2=4mn{[ T2+ (3EL/2)21V2+ Z/T}},
The self-energy evaluation needs the full Green func@gn
N min= ma>{Z/3Te,h/(2\/Teme)]. f[he scregned pof[entiw, and the vertex functiofr'. All the
intermediate variablesé] of momentum and frequency are
Here the Debye length is interpolated between the Debyintegrated out. Sinc& is unknown at the outset, in practical
value and the Thomas-Fermi value, while the minimum im-calculationss, is expanded in a series of Feynman diagrams
pact parameter is either the classical distance of closest apt increasing order of thecreenedinteractionW and the
proach or the de Broglie length. Further, in E§) we have  noninteracting Green functioG°. In the equilibrium prob-
slightly modified theT®? term of Lee and More to include lem theS-matrix development propagates the system in its
the ion temperaturd; which is needed in the electron-ion ground state alT= —< to the ground state &t=~. In the
relaxation problem. This Lee-More model and other modelsionequilibrium case the system need not return to the initial
vary in some details but lead to similar numerical estimatestate when propagated o= (where the interactions are
(to within a factor of 2 of the relaxation rate. Hence we shall asymptotically switched off This difficulty is solved in the
use the above equations as a representative of the convelkeldysh method by propagating the system back to its initial
tional Spitzer-type calculation df,, inclusive of some de- State atT=—co. Further, experience has shown that useful
generacy effects. results are obtained by taking the vertex function to be unity,
leading to theGW approximation first studied in detail by
Hedin for the electron gas. In our problem, the self-energy
has contributions from electron-electron scattering and from
The discussion of the self-energy for equilibrium systemsg|ectron-ion scattering. The electron-ion contribution to the
with pOint ions is well known. Here we consider the CaseSe”_energy is of interest to us in the energy-re]axation prob_
involving pseudopotentials and the two-temperature genellem, Of course, it is not clear that @W evaluation of3,
alization of the self-energy. The single-particle electronyoy|d be adequate in the electron-ion problem, even though
propagator G(k,t;k’,t'), i.e., ((ac,a,)), describes the it may be the case for electron gases in metals. Our approach
propagation of an electron introduced into the systene- would be to evaluate the self-energy in a generalized
ated in the momentum statk, at timet, and removedan- random-phase approximatiofRPA) where realistic pair-
nihilated from the momentum statk’, at timet’ [9]. The distribution functiongy;(r) andgi(r) of the ions and elec-
propagating particle suffers scattering events, and acquirasons are used instead of the simple RPA forms. The neces-
an energy shift and a damping which are given by the reasary all-order static distribution functions can be obtained via
and imaginary parts of the self-ener@y(k,k’). This is re-  suitable density-functional and hypernetted-chdiiNC)
lated to the noninteracting Green functi®f and the full methods[10]. Further, by explicitly constructingveakion-
Green functiorG by the Dyson equation. A number of com- electron pseudopotentialdl,, which model the all-order
plications arise in dealing with nonequilibrium systems.density-functional calculations, a first order calculatiorof
When using the Keldysh form of the Martin-Schwinger ap-using the screened,. becomes quite justifiable.
proach, all Green functions, self-energies etc., become The lowest order screenede ande-i diagrams are given
(2% 2)-matrix operators, wher&,, deals with propagation in Figs. 1 and 2. Figure(#) is just the bare exchange dia-
from timet=—o to t+ie above the real axis, an@,, re-  gram, while Fig. 1b) brings in the density fluctuations in the
turns the system from time—ie to t=— below the real electron gas. In the-i case(Fig. 2), the propagating electron
axis. Thus the Dyson equation itself becomes a matrix equaemits an ion-density fluctuation and reabsorbs it at a later
tion. However, it turns out that, in the present problem, thetime. Thee-i interaction lines are denoted with a star at the
results of the full analysis have the safoem as those of the ion vertex. This interaction is screened by electron-
equilibrium problem, except that all the distribution func- polarization loopgshaded loopsand ion-polarization loops
tions appearing in the final result have to be the nonequilib{diagonally hatched loopsin fact, Fig. Zc) corresponds to
rium ones. Hence in this section we write the normal selfthe coupled-mode case discussed in detail in Appendix B.
energy for a system of ions at temperatdre containing  The usual discussiorig.g., in Fokker-Plank theory, E()]
electron Fermi distributions(k,T) and ion distribution include only the screening from the electron subsystem and
functionsp(k,T), and replace them by(k,T,) andp(k,T;)  correspond to Fig. (®).
as appropriate. Also, in the following we replace the time Density fluctuations are bosonlike, and their contribution
interval t’ —t by » via a Fourier transform, and hence as-is denote@® . In thee-e case the propagating electron emits
sume that steady state conditions hold for time scale largeand absorbs an electron-density fluctuation. It also undergoes

B. Quantum mechanical self-energy approach
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FIG. 1. The electron in the staté, () is exchange scattered to
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(@) (b)

FIG. 3. (@ Feynman diagram for the lowest order energy-
relaxation process corresponding to the simple Fermi golden rule.
The cross-hatched oval is the electron polarization. The dot-dashed
line decorated with a star is the bare electron-ion interaction. Its
screening by the ion subsystem only is showr{dn (b) Diagram
for the coupled-mode energy relaxation. The doubled dot-dashed
line is the renormalized electron-ion interaction given by the Dyson
equation shown irid). The diagrams have to be evaluated using the
Martin-Schwinger-Keldysh rules for nonequilibrium problepds.

state K—q,») by the Coulomb interaction(a) Bare exchange in- s U3(q)dq [~ do'A%(q,0’ )N (w'/Ty)
teraction.(b) The Coulomb interaction is replaced by a screened B‘f (27T3) 700 D(w,w') . (17
interaction consisting of electron-polarization loops. In actual cal- ’
culations the effect of vertex correctioisot shown in the dia- L re '
gramg are approximated via local-field corrections. These diagrams e_ _J V(q)dg (= de'A%q,e’) Nk—q (18)
are entirely in the electron subsystem, and do not contribute to X (273 J-= D(w,w") '
energy relaxation.

D(w,0')=(0+id—w'—€_q), (19
exchange scattering and hence there 5,a The diagrams
(at finite temperatujecan be evaluated using the Matsubara A%(g,0)=—A%Qg,—w)=—2Imy%(q,w), (20
rules applied separately to each subsystem, and leads to the
same resultin this casg¢ as those obtained from the Keldysh NS(w)=11exp w/Ts)+1]. (21

method. Then we have

3= 2K, 0)+ 25K, w), (15)

Se=3R(K o), (16)

Kk A
py _._._O
~§:§\ X:e
N
ﬁq .....
0=V ljl-’ v OO
V4
® A
Voo (@) Ugy(q)———-
@ () ©

In the above equation&l®(q) is thes-e pseudopotential and,
hence, fore-e, this is just the bare Coulomb interaction
V(q)=4m/q?. The ion-electron pseudopotentidl(q) will

be more explicitly denoted by,.(q), and is obtained from
the full nonlinear density response of the ion in its Wigner-
Seitz cavity to a uniform electron gas, calculated from the
Kohn-Sham equatiorfd]. The equations given above are for
the simpler case of Fig.(8). The coupled-mode form, Fig.
2(b) would require the use of the coupled mogg.(q,w)
and the coupled-mode distribution functidfi(w). This
will be discussed in Sec. Il D and in Appendix B.

The noninteracting single electron energy, of the in-
termediate statk-q and its occupation numbey_, occur in
these equations. The bosonic spectral functiéf(g),w) are
related to the response functions by Eg80), and to the
dynamic structure factors by the equation

1
S(q,w)= ZNS(—w)AS(q,w)- (22)

FIG. 2. The electron in statek(w) is scattered to state We also note that since the response functions are express-
(k—q,») by the electron-ion interaction. The ion vertex is indicated ible in terms of the inverse dielectric function, the spectral
by a star.(b) shows the screening of the electron-ion interaction byfunction term can be rewritten to explicitly show that the
the electron subsystentb) shows the coupled-mode behavior in- potentials occurring in the above expressions are(the
volving the mixing of electron polarizations and ion polarizations. namically) screened quantities. The construction of response
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functions, etc., will be taken up below, in our discussion of

the dynamic structure factors. At this juncture we note that He= X Uild)ataypq, (26)
the self-energy equations describe the damping of the propa- kk'.q

gating electron occurs via its scattering with thermal _

modesof the system, and not in terms of simple binary col- pq=[pqt pT_q]. (27)
lisions.

Since we are interested in the damping rate due tHere p,=3;; e'q (i=r) defines an ion-density fluctuation
electron-ion interactions, the quantity of interest is the imagiwith wave vectorq Also, r; andr; are ion coordinates. To
nary part ofS§. This can be finally written in terms of a simplify the presentation, we assume for the moment that the

single-particle electron-ion collision time" as follows: spectral functiomA(q,w) describing ion density fluctuations
_ has essentially one modeay, e.g., the plasmon mode. The
1Ur(k)¥e=—2 Im3®. (23)  full mode spectrum will be restored in the final results. Let

the electron subsystem go from the initial stateo the final
However, we are not interested in the number of collisionsstatek, whereby the ion subsystem increases its population
but in the energy- relaxation ra@rlx . rIx for an electron of of denSity fluctuations fromN((,!)q/T) in the initial state to
energyw =k?/2 and momenturk is obtained by including a N(wq/T;)+1 in the final state. Heré&l(w,/T;) is a Bose
factor ofw’ inside thedw' integration in Eq(17). To obtain  factor at temperatur€; , and will be abbreviated qu We
the energy loss from the whole electron subsystem, it wouldienote the probability of this process By, and have
at this stage be natural to average over the electron distribu-
tion. Thus the one-electron self-energy approach would lead Wi = 27T|Uie(Q)ak,kr(Q)|25;:,kr(Q), (28)

us to the estimate fdE, given by

ay k(@) =(k,Ny+1|afagpglk’ ,Ng), (29)

3
E2o f Tk Tav(k Ta), (24) .
(2m) S (A)=8(e — €= wg). (30)

This further reduces to

d 3
7(k,Te)=f$|Vei(Q)|2f do’o'f(0’ k,q],

(25 W'=2m(Uie(@) i (@)P(Ng+ 1) 8 (). (3D
where Here 7, «(q) denotes a density fluctuation in the electron
_ subsystem arising from the transition of the electron from

flo’ K,0)=8(0—0'—€q)N(o'/T)A(q,0"). statek’ to statek, with the emission of momentump. Simi-

larly we have a rat&V' for the opposite process:
Note that in the above expressions, the electron and ion-
distribution functions contain their respective subsystem W =27lU. () I2NLST 32
temperature, andT; . [Vie(@) 710 (@) i (9) (32

+ — _
C. Fermi golden rule approach O (Q)= Oew — €t @g). (33

In the classical Fokker-Plank approach and the quantu
self-energy approaches, the damping dliragle test-particle
was calculated first, and then an average over the test-particle
distribution was used to obtain the overall relaxation rate.Eqx= 273 wg|Uie(q) 7k (@) *Pir [{Ny+ 115~ — 87 (N1,
However, quantum mechanically, the energy-relaxation rate

of a subsystem with the Hamiltonidth is essentially(HS>, Here P, is the statistical probability of occurrence of the
and this is given by the commutator mean va{liel,H]), initial electronic staté’. We interchange the dummy indices
whereH is the total Hamiltonian. In this problegas well as  k andk’ in the last delta function, and use the fact that
in the previous two approacheshe nature of the nonequi-
librium density matrix used in the calculation of the mean ew =€t g, Py=Pye@alTe (34
value has to be resolved. However, as discussed in Appendix
A, once quasiequilibrium conditions are assumed, the stat&) write E
functions of each subsystefat its quasiequilibrium density
and temperatupeare easily calculated. Then the lowest order . -~ T
evaluation of([H,H]) reduces to a FGR calculation of the  Enx=2m wg|Uie(a) i ()T (Ng+ 1)—elwa/TeINg]
energy-exchange rate between the two subsystems. The dia-
grammatic content of the calculation is shown in Fig&) 3 X > |77k’k,(q)|273k,5( €k — Ex— W)
and 3c), and should be compared with Figs. 1 and 2, which
define the self-energy calculation.

The electron-ion interaction Hamiltonian is given by The electron-response function can be written in the form

rTf‘hus the energy exchange raig, is

nx in the form
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| Dk (D 2P =Py

Xed 0,0)= 2 :
K.k’ w+ido+ €k’ — €k
2
’ P '
_(eTe—1)S) | 71,1 (D] Py

v [0 —ex—(w+id)]

The quantity e“”TE— 1) is simply the reciprocal of the Bose
factorN(w/T,) at theelectrontemperature. Hence, rewriting
the expression foE,, in terms of Imy.dq,w) and simpli-
fying, we have

Eix=2qogl Uiel @2 IN(0q/Te) = N(wq /T 1A%(Q, o).
(35)
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Ecc: I-Erlx [(Te—=T)), (41)

Je fwdwf do’ Uio(q)|2ACA 42
Jec— OE (277_)3| ie(q)| ) (42

where the last result is the limiting form. This forfiq.
(41)] has often been used in analyzing experimental data,

together with the added assumption thigt is a constant
within the parameter space of the experiment. In such cases
the energy relaxation per unit mass of matter, or per unit

volume is relevant. Note thﬁnx itself can be specified as a
rate for the whole system, per ion, per electron, per unit
volume, or per unit mass, as may be convenient, since we
may assume that the plasma has length scales significantly

Up to now we have assumed that the ion-density fluctuation,ger than an electron mean free path. This assumption may

spectral function is of the delta-function form2=[ 6(w

—wg) — d(w+ wy)]. Generalizing to the full spectral func-
tion Al given by Eq.(20), we can writeE,, as an integral
over w over the range-« to +«. Using the antisymmetry

properties of the spectral functions, etc., the integration range

can be reduced to the range 0cto
- (" do [ dg® 5 oni
Emn= fo w5 (ZT)3|Uie(C1)| ANGA®A',  (36)
ANgi=[N(@/Te) =N(w/Tj)], (37)

ACA'={—2Imxed Q),», TeH —2 Imyi(q,0,T)}. (38)

Thus, when the electrons are hét,, is the net energy-loss

rate from electrons, and correspondg k). If we return to
the single(ion-density fluctuation mode resulfEq. (35)],
and consider the case of a solid, then it describes the ener

exchange between electrons and a phonon mode of ener?ﬁ“

wq and reduces to Kogan's formu[d1]. However, in our

not be valid for dense plasmas formed in semiconductor
nanostructures. The conversion between different ways of
specifying the coupling constant is not always simple. For

example, a conversion betweeg/ion andg.J/electron re-

quires an evaluation of the ionization balance which gaes

D. Energy relaxation in a system with coupled modes

If we consider an ion of nuclear char@ewith effective

ionic chargez the ion carrieny,=2—2Z bound electrons.
The nucleus and ite,, bound electrons are at the ionic tem-
peratureT;. This ion is also screened by a charge displace-

ment An of electrons which integrate td. This sheath of
screening electrons is at the electronic temperaliyeand
adiabatically follows the ion, to within the Born-
Oppenheimer approximation. This object, consisting of the
nucleus, the bound electrons, and the static sheath of screen-
electrons, constitutes the neutral pseudoai®iRA).

s the NPA is a two-temperature object, with the nucleus
and the inner core &k;, while the screening sheath is&{.

case the ion-density fluctuations are excitations screened B§/iS this screening which converts the ion-plasmon mode at
the electron fluid, and hence the ion plasmon is replaced byi into atwo-temperaturgon-acoustic mode.
an acousticlike mode and other features which are best de- In applying the FGR, it was assumed that the electron

scribed by the full spectral functioA'. Calculation of the
spectral functions needed in E(@6) are treated below in a
separate subsection.

Coupling constants and relaxation times

The final form of the FGR expression, E§6) shows that
the relaxation rates are proportional to the population imbal
ance[N(w/Te) —N(w/T;)] in eachmode Thus a mode re-
laxation timer,,, can be defined such that the rate of relax-
ation of a given mode is given by the rate equation:

L N(cu/Te)T— N(/T)] @9
qw

Tqo= L[ [Uie(9)|?A°]. (40

subsystem wasonstructedo be independent of the ion sub-
system. This is indeed possible in a mean-figtatic sense.
Thus the ion-ion pair potential was constructed to include the
existing screening effects of the electrons, and this gave rise
to the static ion-distribution which existed when the laser
pulse arrived to heat the electrons, while the ion cores re-
mained cold. If the coupling of the electron density fluctua-
tionsn(q) = Ekanak with the ion-density fluctuations(q)
become dynamically important, we need a detailed coupled-
mode description of the system. In such a system we do not
have purely electronic or ionic normal modes, and then the
energy transfer occurs from the hot modes to the cooler
coupled modes of the system. Coupled-mode formation has
its own time scales, and hence may not be relevant to very
short-pulsed excitation processes, at least in the initial stages
of the time evolution. When coupled modes are formed, elec-
tronic density fluctuations mix with ion-density fluctuations

We also note that in the limit where the temperatures argnd hence the ion-mode populatiofw) is not simply

larger than any of the mode energidgw/T), tends toT/ w.
Hence the termT.—T;) can be taken out of the summation

to define a coupling constagt.. Thus

N(w/T;) and has to be determined by two coupled processes.
These ardi) electron-ion energy exchange, afid a return
to equilibrium of the ion populations due to the damping of
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the ion modes and their coupling to the rest of the material W(w/Ti)A‘(q,w)+ﬁ(w/Te)Ae(q,w)
which acts as a heat sink. The latter involves a simultaneousN (/T ,w/T¢) = . .
solution of a heat-flow equation controlling ion equilibria- A'(g,w)+A%(q,0)

tion. To simplify the discussion, in the following analysis we (46)

assume that the ion equilibriation is efficiently coupled so St turns out(see Appendix Bthat the new expression for the

to maintain the ion subsystem &t, and that coupled modes ; ; i :

are formed without time scale restrictions. The latter assumpﬁggr,%é r:iE)g?él?:%gtfe?urpeTﬁztsjpIed-mode picture is almost
K .

tion is in any case necessary as we do not at present have
clear picture of the time scales which determine coupled- = d dq?

mode effects. The theory of coupled-mode relaxation is at E, :f w_‘” —q|U-e(q)|2ANcmA‘Ae .4
present a leading edge of research and contro@3)y In 5 2mw) (2m)3 ' om

order to understand the coupled-mode problem let us look at

the density fluctuations in the ion subsystem. The ion- Adn=—21IMxn(Q,0,T;,Te), (48
response function of the ion subsystem alone is of the form
AN =N(w/Tg) =N /T, ,0/T). (49
Xii(9,@) = xi/[ 1= Vi(1= G xil, (43 o e e

This equation can be cast into a form which is more sym-
where G;(w) is a local-field factor. When the ion-density metrical in electrons and ions by rewriting it in the form
fluctuations couple with the electron-density fluctuations, the
coupled-mode function is given by the Dyson equation ) foo d dg® ANGAA®

rix

gt Uie(@)|2
* |l_{|vie(q)|2Xee}Xii|2.

2 3
X @ 0) = xi I1—{|Vie( D [xedxi]. (44 T (2m)

The Dyson equation iterates the ion-response loop and thgere the coupled-mode distribution has disappeared. Instead,
screened-electron ion interactigsee Fig. 8)] to give the 3 new denominator which is the denominator of the cm
coupled-mode(cm) response functiony.,(q,»). This cm  pyson equation, Eq45) has taken over the job of screening
response function can be rewritten in termsxSfand the  the bare interactions and distribution functions.

e-e, i-i denominators to reveal the denominator

1. Dynamic structure factors

= V3 2,0,0
D= DedDii = Vie @) [“Xeekis (49 In our application of the Fermi golden rule, we have

treated the electron subsystem and the ion subsystem as two
weakly interacting systems coupled via the weak pseudopo-
0 tential U;.. Hence if we assume that the electron response
Dee=[1~Ved k) (1~ Ged Xeel: function and the ion response function can be modeled inde-
pendently, then we would have, wix=e ori,

where the denominators are

D”:[J_—V"(k)(l—gu))(u?]

Xss™ X(s)s(q1w!Ts)/Dssv (5D
In fact, if a two-fluid description had been used from the
outset, the ion-ion response function comes out to be of the Dss=[1—Ved @) (1~ Gso xoel- (52
form
Here Xge is the Lindhard response function whijg is its
Xi= X 1—Ved K) (1= Ged X2/ D, classical limit usually called the Vlasov plasma-dispersion
function. The finite temperaturstatic electron—local-field
where the denominators are factor G, is available from the finite-temperature electron-
exchange correlation function and related stufiies. In the
D=D.D;— Dy, case of the ion-response function, it is very important to

model the local fields, etc., so as to recover the realistic static
structure factoiS;(q) of the ion subsystem. Of course, one
may construct more sophisticated dynamic structure factors
) ) ] (at least for the ionsby appealing to other methods based on
The dynamical equivalent of the local-field factors are therenormalized kinetic theory of fluids, etc. However, we have
vertex corrections which can be formally included in thefy,nd the simple methods used here to be adequate for a
Dyson equation. In effectD is simply D¢, inclusive of  ide class of plasma problems. A discussion of this aspect
local-field factors. The main point about the denominatoryng comparison of the dynamic ion-structure factor with that
Dem(0,@) s that it replaces individual density fluctuation gptained by molecular dynamics simulations was given in
modeswg, s=e andi by hybrid modes, some of which are Ref, [13]. To this end, we defineF;(q) in the following
electronlike in one extreme, and unscreened-ion-like in thQ\,ayS:

other extreme. The distribution function of this cm system is

neither atT, or atT;. It is not a Bose, Fermi, or Maxwell (0, 0,T)

distribution, but has the two-temperature fofsee Appendix Xi= ,
B) " 1= Fiaxi@,0,T)

Dei= Vel 2Xixod 1= Gie) (1 Gep).

(53
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—1/,0 — TABLE |. Charge-density-fitted ion-electron pseudopotentials
" = YT . .
Fi(@)=xi+ Ti/LpSi(a)] (54) for Al ions as a function of temperatur@V) in a plasma at the
The last equation holds for the static case 0 when y; is melting-fluid density Rys=3.121 a.u, i.e., unit compression. The

— i . ) well-depth parametdd, the pseudocore radil®., and the param-
—pS_“(q)/Ti for a classical system._ The reqL_llrad(q) _'5 etersA andq, are defined in Eq(60), and are in atomic units.
obtained from an HNC equation using the pair potential

_ T (eV) 7 Re D A o
Uii(@)=Z2V(a) + |Uie(q) *xed A, To)- (55)

2.5 3.0004 1.5417 0.7228 1.08 1.28
Here the(statig electron responsg.. and the ion-electron 5 3.0004 1.5419 0.7687 1.26 1.40
pseudopotentialsee Sec. Il D Pappear. 10.0 30230 15397 0.8862 197 204
Once the dynamicat.. and x; described so far are cal- g 3.5997 1.4864 1.0010 356 3.85
culated, a reasonable approximate description of thgg g 43479  1.4479  1.0801  3.35  3.37
coupled-mode forms can be constructed using the iongg o 51927 1.4153 1.2480 1.35 1.31

electron pseudopotentials in E@4). However, it should be
noted that sometatic aspectof the coupled modes is al-
ready included in the FGR approach which uses dynamigbtained from the density-functional procedure. Thus, since
structure factors constructed from the experime@aHNC- (k) is thelinear response functiorl) (k) is by construc-
type) static ion-ion structure factor. The dynamical coupled-tion a pseudopotential which gives the true nonlinear free-
mode effects play a role in various situations; e.g., theyelectron distribution in a linear response. Such a construction
manifest themselves as ion-dynamical effects in determiningioes not imply that the phase shifts of the pseudopotential
the shapes of spectral lines near the line center. U, are the same as that of the full atomic potential.

Since we are studying a collisional property related to
transport, we also consider the SRF pseudopotential deter-
mined so that the mean free path calculated uslngk) in
the Ziman formula is identical to that given from the

electron density and temperature. A pseudopotential aIIowE'ma.mX gorm or:‘.f':hef Zlma}]n fgrmqla fWh'C.h usles lthel fl.J"
us to replace the full atomic potential by a simpler potentia2OMIic phase shifts from the density-functional calculation.

which deals only with a limited set of electrons, the so-called! "2t IS, we require that

valence electronsZ in number, and formally factorize out » dn
the core electrons attached to each nucleus. Depending on fT=f €
the application considered);, may be chosen to satisfy a

class of desirable properties accurately. Thus we may require . sy d
that (i) the pseudopotentidl . generates the same displaced f :f 9°>(9)Si(a)dq (58)
charge densityan(k) as the full atomic potentialji) that it Pt Jo [1+exp{Ble(a)/4—ul}]’

be sufficiently weak so thain(k) is obtained within linear

response; andiii) that it has the same phase shifts as the fr="fosew (59
original atomic problems, at least for a given range of ener-

gies. If the phase shifts are to be correctly reproduced, ¥ the abovengp(e) is the Fermi-Dirac occupation number
nonlocal, energy-dependent pseudopotential which is nder a level of energy. The energye determines the upper
necessarily weakin the linear response sendecomes nec- limit of the momentum transfe, for theq integration to be
essary. In such circumstances, it is often easier to work di€2/4)v2me. TheT matrix T(q) is the elastic scattering cross
rectly with the phase shifts and the relevdnmatrices. Al-  section(ESCS calculated from the density-functional phase
ternatively, we may choose the pseudopotential to reproducghifts[15], while % (q) is the ESCS calculated from the local

a specific property, e.g(a) the electrical resistivity ofb) ~ pseudopotential whose parameters are adjusted to ensure that
selected peaks in the optical absorption spectrum. In thiér is equal tof ,ee.

paper we will study two models for the pseudopotential, viz., Rather than using a numerical table that would result

a “charge-density-fitted’(CDF) pseudopotential, which sat- from, say Eq.(56), the CDF pseudopotentials were fitted to
isfies the criteria(i) and (ii) listed above, and a “static- the forms

resistivity fitted” (SRP potential, which satisfie&). Unlike

2. lon-electron pseudopotential

OnceZ is available at a given ion density fixed BRys
andT,, we need the ion-electron pseudopotenitialfor that

Am
ZZ(S)L a*T(@)Si(q)da, (57

the CDF potential, which fitdAn(q) for a full range ofq Uie(k)=—V(q)Z[DJ(gR.) +(1—-D)cogqR;) 1K(Qq),

values, the SRF potential is a fit to just one numfoera few

number$ and is of limited microscopic significance. J(x)=sin(x)/x, (60)
A CDF pseudopotentidl;, which satisfieqi) and ii) is

actually a byproduct of the density-functional calculation, K(a)=[1+X\(a/do)?)/[1+(a/do)?].

and is given by
HereD is a well-depth parameter arR}. is a cutoff radius,
Uie(K)=—An(k)/ xed k). (56)  while N andq, provide additional adjustments to tigede-

) ] ] pendence of the basic Ashcroft form. Some examples of the
The displaced electron chargen(k) appearing above is the pseudopotentials used in this work are given in Table I. In

nonlinearcharge pileup around the ion of effective cha%e parametrizing the SRF potential, we used only the bare Ash-
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croft form[i.e., K(g)=1], but introduced an electron effec- 10°
tive massm; into the screening function defining the ESCS, 10
viz., 2(q) appearing in Eq(58), as in Ref[16].

T,=20eV T/T,=187

=
(SR
il oo ol ool

310
Ill. CALCULATIONS ‘o
3
In this section we present our numerical calculations for % 10°
the energy-loss rate from a subsystem of hot electrons inter- 1o°

acting with a subsystem of cold ions. Such a plasma can be .
generated using short-pulse laser techniques, where the pulse 10
duration is smaller than the relevant time scales of the ions. 10° —— ———t
Thus the conditions can be arranged so that the ions remain 10 10’ 10
essentially near the melting temperature of the material al- fau)

most at solid density, while the electrons absorb energy and F|G. 4. The dynamic structure factSg(k, », T,) of the electron
reach extremely high temperatures. The properties of such @ubsystem at 20 eV. The different curves are for indicated values of
highly nonequilibrium system can be probed using a weakhe wave vectok in units where & is 80. The electron plasma
probe laser applied within a succession of time delays. Maﬂ%equencyw§|=4wﬁ/me is also shown. The Fermi energy s .

such experiments have been reported, especially for Al, in

the recent literaturfl4]. Hence we present calculations for a ywe|l with the experimentaB(k) of Refs.[17,16. The next
two-temperature Al plasma, where the ions are essentially aftep in the calculation is to use E(p3) to obtain the dy-

the melting point(943 K, 0.0813 ey and at a density of npamic structure factor of the ion subsystem. The results of
2.374 glcc. This corresponds to a Wigner-S€WeS) radius  this calculation are shown in Fig. 5. The figure shows how
Rws of 3.121 a.u.(while the room temperatur®ys iS  the bare ion-plasma frequency is converted to a lower-energy
2.98228 a.y. ThusT; is 0.0813 eV, and . can be increased jon-acoustic mode which depends nearly linearly on the
by raising the amount of energy deposited by the laser pulsgvave vector. As expected, the widtlamping of the mode

As T, is increased, the heated dense electrons interact withisg increases with the value kf

the core electrons, and the effective ionizatibrincreases Using these results and Eq86) and(50), we can calcu-
upwards from the value &=3 at the melting. We calculate late the energy-relaxation rates within the si.mple FGR and
e i T , . also for the coupled-mode approach. The Spitzer-Brysk-type
Z by immersing an Al nucleus together with its Wigner-Seitz o5 ,t[Eq. (10)] is easily calculated, and does not require the
cavity in an electron gas at the required temperalireand

; ! . dynamic structure factors and other machinery that we have
self-consistently solving a Mermin-Kohn-Sham problemge; 5 Figure 6 displays the energy-relaxation rates calcu-

[10]. An ion temperature does not directly enter into this|,teq from these equations as a function of electron tempera-

problem at this stage of the analysis, except via the choice q,re T_ "while the ion temperature remains fixed at the melt-
the Wigner-Seitz radius which depends on the ion den5|ty-mg point of liquid Al. The Spitzer-Brysk curves are about

No formal problem associated with the question of the appliy,, orders of magnitude higher than the FGR estimate,

cability of density functional theory to a nonequilibrium set- 1.1 is also about an order of magnitude higher than the

ting arises in this calculation. Some values of the caIcuIategystem with coupled modes. The energy-loss (&teR) cal-

Z is given in Table I. Onc& is known, the electron density culated using the CDF pseudopotentials is shown as a solid

n at T, is simply Zp, and the electron-sphere rading is line, while the'results of the SRF pseudopotential are shown

Ry /Z /3 as a dashed line. These results show that the CDF and SRF
WS .

The numerical calculations require the two dynamic Struc_approaches are in satisfactory agreement. Hence we feel that

ture factorsSy(k,w,T,) andS;(k,w,T;). The dynamic struc-
ture factor of the electron subsystem is immediately avail-

able from the imaginary part of.dk,»,Te) using the 10 3
temperature-dependent local-field corrections obtained from 10
the derivative of the finite-temperature exchange-correlation - ]
potential V,.(rs,T.) of density-functional theory12]. Fig- s® E
ure 4 showss,(k,w,T,) at 20 eV. As expected, the electron- £107 5

plasma mode is well defined for small wave vectors, and £ 10° 4
broadens out for large momenta. In calculat®gk, »,T;) 1
we first construct thetatic k) of the ions using the ion-ion

pair potentialU;(k,T;) obtained fromU(k,T;) using Eq. 10”5

(55). Thus the electron temperatufg does notenter here, 10° ——r—rm : — -

since the ion subsystem has not come to the temperature of 240" 10" 10° 10°

the electrons, but was formed when the system was initially o fau)

in equilibrium at the temperature of the ion,. The static FIG. 5. The dynamic structure factor of the ion subsystem, i.e.,

S_(k) is caICL_JIated using a hype_rne_:tted-c_h_ain procedure_ inclus,(k,w,T;), is shown as a function @b andk. The bare-ion plasma
sive of a bridge term, for a fluid in equilibrium &;. This  frequency is also shown for comparisdR. is the melting point
calculatedS(k) of liquid Al at its melting point agrees very (m.pY temperature, 0.081 eV.
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10 - - : perature Tpoqe, Made up of a mixture ofhot) electron-

- ] Spitzer ; density fluctuations angtold) ion-density fluctuations. Simi-
o 3 larly the cold-ion modes are replaced by less cold cm modes
o . ] cm.. The energy relaxation between grand cm is less
g 10 3 Tn= Mpt. | efficient than the unrenormalized hot-electron modes and
3 10° 3 : : | cold-ion modes. However, it is not easy to determine
e 7>3 D74 | whether such coupled modes are important or not in dense
§ 10° 4 : i ’ plasmas, and what their relevant time scales are, at the
-~ ] present stage of our research. The coupled-mode problem is
2 107 E a nonlinear effect going beyond the first-order Fermi golden
8 ] rule result, and at this stage we have no clear understanding

10”5 : | of other nonlinear effects and the time scales required for the

o] 4 © Aluminum at normal density ] coupled-mode picture to survive. However, there is no ques-

10 00 BO 100 160 200 250 300 350 400 tion that the FGR result by itself predicts a much slower

T, (eV) energy relaxation of hot electrons in dense plasmas than had
been anticipated on the basis of Spitzer-like approaches.
FIG. 6. The energy-relaxation rat@tomic unity calculated  Some of the recently available experimental results do seem
from various models. The curve labeled FGR is the Fermi goldeng favor relaxation-rate constants which are about an order of
rule calculation, Eq(36). The coupled-mode calculation E&O) is magnitude smaller than anticipat¢d8,19. However, the
labeled CM. The solid and dashed lines are the results from th%nalysis of the experimental data needs more careful and
CDF and SRF pseudopoten_tifils. The Spitzer-Brysk-type curve i%ase-specific calculations.
based on a form of the collision frequentiq. (10)], which re- In this paper we have presented results for a system of hot
duces to that of Lee and More i, = 0. The value of the effective  ooctrons and cold ions. The case of cold electrons and hot
ionic chargeZ applicable to various regimes is also indicated. jons involves a different set of calculations where the high-

_ . ) _ temperature ion-structure factors, etc., have to be calculated
the ion-electron interaction potentials are adequately,ging pair potentials constructed from pseudopotentials
handled, and that a full phase-shift approach is probably na{creened by cold electrons. Although the electrons are cold,
necessary. The coupling constants corresponding to the ELfRay can still follow the ion motion, and hence electronic
are given in Table I, and show the same strong differencget_consistent field calculations will be needed in setting up
between the FGR-type results and the estimate from thg,, quasi-EOS. Another interesting problem is the case
Spitzer-Brysk approach. The even greater slowing down Ofyhere the hot-electron distribution has a super-high-
the relaxation rate under coupled-mode formation is Wha%emperature “spike” imposed on the underlying distribution

one WOUId expect on simple physical grounds. Qne mightatTe. These issues will be taken up in future work using the
associate a “temperatureT,,qe for each mode, using the ¢5me formal methods.

distribution given in Eq(46) by writing
Ner( @/ T @/ Te) =N @/ Tinodd IV. CONCLUSION

and attempting to understand the temperature distribution in 'Ne results presented show that the usual Spitzer-Brysk-
the coupled modes. The coupled modes, aeplace each type calculation badly overestimates the FGR result in the

hot-electron mode by some what less hot cm mode at a tenj€gime studied here. The collective nature of charged fluids
is ignored in the Spitzer-Brysk form. The extremely weak

TABLE II. Calculated values of the electron-ion coupling con- OVerlap between the spectral functions of the electron-
stantg,, for Al at normal density, and witfT; = 0.081 26 eV. Re- densny.fluctugthr(plgsmonllke} and ion-density fluctuation
sults from the Spitzer-BryskSB), Fermi golden ruleFGR), and (acoustic excitationsis the cause of the extremely slow en-

coupled modéCM) calculation are given in W/K/cubic meter. ~ €rgy €xchange between the two subsystems. The inclusion of
coupled-mode effects leads to a further decrease of the re-

T (eV) SB/1G° FGR/1d7 CM/10%6 laxation rate, and it is entirely possible that mode-coupling
effects could be quite important in many dense-plasma situ-

3.0 0.04972 0.1691 0.1744 ations. Currently available time-resolved experimental meth-

4.0 0.09383 0.1795 0.2048 ods would be able to probe the interplay of time scales, mode

5.0 0.1467 0.1918 0.2294 coupling, mode damping, and other fascinating aspects of

7.0 0.2603 0.2050 0.2475 nonequilibrium dynamics of these systems, and obtain real-

9.0 0.3422 0.2460 0.2416 istic values of the energy-relaxation coupling constants. Just

10.0 0.3634 0.3337 0.2374 as theory can guide certain experimental investigations, non-

15.0 0.4234 0.2957 0.2994 equilibrium statistical theory urgently needs good experi-

20.0 0.5099 0.3538 0.3157 mental sign posts to guide its further development.

25.0 0.5816 0.4372 0.3336

30.0 0.6675 0.5111 0.3456 ACKNOWLEDGMENTS
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course of this work. We thank Hugh deWitt for drawing our density; Here F

is the free energy of the electron gas
attention to Ref[20]. eg ay g

inclusive of electron-electron interactions, and depends only

on T, and the electron density. Hence this too can be
APPENDIX A: THE QUASIEQUATION OF STATE unambiguously evaluatdd]. The remaining two termB o,
.andF, are the energy of “embedding” the ions in the elec-

In this appendix we review the concept of a “quasiequa _
tion of state” for a two-temperature plasma in a steady stateo" 92S, and the excess free energy of the fluid. Both these

If the ion subsystem and the electron subsystem are assumigMs involve the interaction term of the Hamiltonian and
to be completely independefite., ignoring the ion-electron '€dUIreé some care in .the noneqmllbr'lum §|tuat|on. It turns
interaction term, giving no energy relaxation or coupled®Ut thatin the calculation df e, for a single ion we invoke
mode$, then a fully decoupled treatment is easily carried outth® ion temperature and ion density only to define the
[20]. In reality, the main difficulty is to include the interac- igner-Seitz cavity for placing the nucleus of the ion. The
tion part of the Hamiltonian for which a single temperature"cleus and the cavity are now placed in the electron gas at
cannot be assigned. Further, the usual statistical mechanica|t®mperaturd’e, and the Kohn-Sham procedure is carried
approachesat equilibrium require a coupling-constant inte- out. Thus in fchls calculation al_so, no formal problgms arise
gration over the interactions in obtaining thermodynamic&nd the conditions for the applicability of the Mermin-Kohn-
quantities. In the work of Boercker and More, the validity of S_ham procedures hold. Slmllarly, this calculation pr0v_|des us
their assumed Eq(1.1) was not examined(say, using with the electron charge displacement _around each ion, and
Zubarev or Keldysh methoyisTheir Eq.(1.1) arbitrarily se- nence the pseudopotentld|e(Te) for the ion at the electron
lected a temperature for the electron-ion interactidg €mperaturel,. However, if the experiment is such that the
which is included in the partition function. They treat the initial state of the system determines the ion distribution
electron-ion interaction only to second order. The ions ardunction and if this remained essentially unchanged during
assumed to be point ions of fixed charge to be determined btf?€ short laser pulse, then we negd(T;), i.e., at theion
some other theory. The electrons are also assumed to fgMmperatureto determine the ion-ion pair potential that de-
classical In reality, the two-temperature quasi-equation-of-term'”_es the ion d|str|but|on? Thus the excess free_ energy of
state has to address quantum electrons which form bouri€ fluid can be evaluated via HNC equations as in Rf.
states in a manner different from an equilibrium plasma, an@nd Fxs entering into the quasi-EOS is tiig evaluated at
leads to an ionization balance which has to be explicitlyTi - ) .
calculated for the giverT, and T;. Boercker and More Once the expression for the quasi-EOS free energy has
present expressions for the dynamic structure fadiarthe ~ been written down, there is no overall free-energy minimum
classical limi}, but their numerical computability is not dem- Principle that can be invoked to evaluate the ion-species
onstrated and they are not used in subsequent theory. No@mpositions, etc. However, when the time scales of the
that our dynamic structure factors are “all order” in the Problem are such that the ion subsystem remains unchanged,
electron-ion interaction, in that the pseudopotentials werdll the ion-composition parameters retain their initial value
constructed from all electron calculations sorting out theWithin the given time step. On the other hand, the electron
bound states and phase-shifted continuum states. Boreckiine scales are assumed to be quite short in comparison to
and More did not use their dynamic structure factors to dis{he time step, and hence wan minimize the expression for
cuss electron-ion equilibriation. They used single-particleth® quasi-EOS free energy with respect to the electron den-
theory (“stopping-power arguments; and presented a hand sity n, subject to the constrain of overall charge neutrality. If
made recipe for extending the Coulomb logarithm to strongwe consider a single-species fluid or an average-atom model,
coupling plasmas. . ~ this simply means that variations are exactly compensated
These dl.ffICU|tIeil..e., mclusmn.qf l_)ound—state formation, for by changes in the degree of ionizati@ Further, a
strong ion-ion coupling, nonequilibrium effects, and quan-y ,nn gham equation rigorously exists whenever the varia-

tum effect$ can be overcome within a certain approximate . ith is legiti ithin the ai .
point of view (quasiequilibrium density matrix in the sense gggle\glt respect ton Is legitimate within the given time

of Zubarey if we suitably generalize the method given by us
for the first principles calculation of the EOS. There we used

a density-functional approach where the interacting systems

are replaced by noninteracting Kohn-Sham systems made up?PPENDIX B: KELDYSH TECHNIQUE FOR COUPLED

of electrons and neutral pseudoatoms. To the extent that the ELECTRON-ION MODES

effect of one subsystem with its interactions, fluxes and cur- The standard Keldysh method deals with a single-

rents could be regarded as prqviding an external potential tﬂemperature density matrix and its evolutiguossibly to a

the other subsystem, a Mermin-Kohn-Sham-type treatmeniyq.temperature steady state, gio. time. The analysis us-

can be applied to each subsystem, even though the two supyy 4 two-temperature model from the outset is less clear, but

systemstaken togetherare not in equilibrium. Hence we o assume that the quasiequilibrium density matrix of

write the quasifree energy per ion of the total system as Zubarev[5] can be employed to justify the approach. Also,
the more formal issues of the existence of a Wick theorem,

F=Figt Fegt FemT Fxs- (Al)  etc., were discussed by Lei and W&il]. The diagram of

Fig. 3(@ shows an electron-polarization fluctuation loop with

The first term is the ideal ion-fluid contribution, and dependsthe vertices connected by the ion-electron interactiguq) .

only on the ion temperaturg,;, ion massM, and the ion When coupled modes are formed, this interaction itself ac-
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quires insertions of the electron-polarization loop, and a new A (w)=\"(—w),
vertex functionA(q,w) is generated. We distinguish the o
2x 2 Keldysh matrix Green functions by placing a tilde on A=—2|Ui(q)|? Imxe(q, @)[ 11+ 2N(w/Te)].

the Green functions, etc., as @&. Thus the electron Green

.= . . = The matrix Dyson equation defining coupled-mode forma-
function G and the ion-density Green functidhare[22] y q 9 P

tion is

r b - e
@:(9 9) and gz( b>’ B, =B+BAB,,. (B1)
0 ¢® 0 bd
The expressions for the coupled-mode propagators are thus
where the superscriptsand a denote the retarded and ad- seen to be

vanced functions. The overbars grandb indicate a corre-

lation function. The electron propagators have the form bem(0, @) =0'(q,)/W(q, w),
9"k, 0)=(0—exive) T, ben=[b+]|b"|2\]/|W|2,
9(k,0)=[1+2N(/Te)] 19"~ 0. W=1-b"|Uie(q)|*IMxe(q, @).

For brevity of presentation, we take the ion-density fluctuarne correlation functioﬁcm provides the coupled-mode dis-

tion propagators to have a single mdeeg., an ion-plasmon -y tion function. The energy relaxation rate is obtained by
mode or an ion-acoustic mode with an excitation enesgl. oy ajuating Fig. &) using the expressions for the cm Green

Then the analysis becomes analogous to the problem of eleg;ctions given above and the standard diagram r{dés
trons interacting with a single phonon mojd&t]. We have 11,5

br=(ba)*=(w—wq+iyi)_l—(w+wq+iyi)_1, ,

. ) dw =~ !
Ee:E|Ule(Q)| f (277)2(') Tr[ZKK’(knyva)ch (q,w)],

b=[1+2N(w/T;)](b"—b?).
The convolution of an electron propagator with a hole propa- z ’=;K€(k ») lex'é(k_q v—o).
gator gives the electron-density-fluctuation loop, and we de- K ' '

Qote its iteration byy.. Then the matrix-vertex function Here y and?are 2x 2 matrices expressed in terms of the
A(qg, ) describing the electron-ion interaction is of the form Pauli matrixesr and defined by Rammer and Smj#. Us-

A=( 3' ia)! where ing the random-phase-approximation form for the electron
term and evaluating the integration, we obtain the energy-
AN (w)=|Ui(q)|? Imxe(q, ), relaxation rate given in Eq50).
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